Isochoric Laser Heating for the study of Warm Dense Matter

Andrew Ng

Physical Sciences Directorate
Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

WDM School, Jan. 14, 2008,
LBNL, Berkeley, CA
Acknowledgment

UBC
Andrew Forsman (GA)
Gordon Chiu (Phase Tech.)
Tommy Ao (SNL)
Edward Lee (MIT)
Heywood Tam (Caltech)
Duncan Hanson (Cambridge)
Ingrid Koslow (UC Santa Barbara)

LLNL
Dick More (LBNL)
Klaus Widmann
Mark Foord
Dwight Price
Al Ellis
Paul Springer
Yuan Ping
Tadashi Ogitsu
David Prendergast (LBNL)
Eric Schwegler
Rip Collins
Stephanie Hansen
Bill Isaacs
Vijay Sonnad
Phil Sterne
Brian Wilson

Research supported by
- LLNL LDRD
- NSERC, Canada
Outline

• Introduction
 – What is *Warm Dense Matter*?
 – *Idealized Slab Plasma & Isochoric Laser Heating*

• Physics under non-equilibrium, extreme conditions
 – Electrical conductivities
 – Lattice stability
 – Band structure and electron density of state

These are university-scale experiments
What is Warm Dense Matter?

- **WDM introduced in 2000**, characterized by
 - \(kT \sim E_{\text{Fermi}} \)
 - \(\Gamma_{ii} = \left[\frac{\text{P.E.}}{\text{K.E.}} \right]_{\text{ions}} > 1 \)

- **Many-body, disordered system**
 - Partial electron degeneracy
 - Excited electronic states
 - Pressure ionization
 - Strong ion-ion correlation

- **High-pressure system**
 - WDM is also HED Matter (>1 Mbar or \(10^{11} \text{ J/m}^3\))
 - Inertial confinement only
 - Rapid expansion
Warm Dense Matter is both fundamentally important and of broad relevance

- As finite-temperature condensed matter or strongly-coupled degenerate plasma, WDM is the basis for understanding the convergence of condensed matter and plasma science

- WDM finds applications in many disciplines
 - High Energy Density physics
 - Inertial Confinement Fusion
 - Shock physics
 - Material science
 - Planetary science
WDM is an uncharted frontier as readily seen from the widely use EOS table - Sesame

Sesame EOS for copper [K. Trainor, JAP (1983)]

APW - Electron band theory at 0K

GRAY - Semi-empirical Gruneisen-Debye theory for solid-melt-liquid

MC - Soft Sphere (Expanded liquid, vapor)

OCCIPITAL - Saha ionization equilibrium

TFNUC - Thomas-Fermi-Kirzhnits theory with semi-empirical nuclear corrections

ACTEX - Perturbation theory for high temperature ionization equilibrium

A critical void appears in the Warm Dense Matter regime
A major hurdle in WDM studies is the lack of single-state data

- Laboratory WDM tends to be non-uniform due to hydrodynamic expansion at extreme pressure

- Properties measured on non-uniform or multi-state systems can only be compared with theory through code simulations that take into account gradient effects

Unambiguous tests of theory requires
- Single-state physical data
- Directly observed state parameters
The concept of an *Idealized Slab Plasma* offers a means to achieve single-state measurements

- An *Idealized Slab Plasma* is a planar plasma that can be considered as a single uniform state in which any residual non-uniformities will impose negligible impact on the measurement of its uniform properties.

- The state can be characterized from direct measurements such as mass density and energy density.
An approach to realize the ISP concept is Isochoric Laser Heating of a solid

- Laser heating in the fs time scale mitigates hydro expansion to yield isochoric condition
- Matching sample thickness to range of laser deposition or conduction scale length yields isothermal condition

Forsman et al., PRB 58, R1248 (1998)

20nm Al heated with a 100fs, 400nm laser

Isochoric heating is scalable to X-rays, electrons, protons or ions
The first *ILH* experiment is the measurement of electrical conductivity of warm dense Au

- Isothermal heating produced by laser skin-depth deposition and ballistic electron transport
- Isochoric condition maintained by material strength & inertia

WDM state characterized by ρ_0 **and** $\Delta \varepsilon$

- $\Delta \varepsilon$ determined directly from $\{R, T\}$ of pump laser

Probe $\{R^*, T^*\}$ **yields single-state data on** $\sigma(\rho_0, \Delta \varepsilon)$
Measurements of S-pol \{R^*, T^*\} reveal an interesting temporal behavior

- Three distinct stages are observed
 - An initial transient
 - Quasi-steady state
 - Hydrodynamic expansion

\[\Delta \varepsilon = (3.5 \pm 1.0) \times 10^6 \text{ J/kg} \]

Similar behavior seen with P-pol probe
Quasi-steady-state behavior is unexpected

- Hydrodynamic simulations suggest disassembly of the foil in \(\sim 1\) ps after heating when the lattice reaches melting temperature

 - Expansion gives rise to a plasma gradient on the surface of the foil; the gradient scale length will continue to increase with time

 - To maintain constant probe \(R^* \) and \(T^* \), it would require the dielectric properties of the non-uniform system to evolve in a manner that precisely mitigates gradient effects at all times

 This is improbable

The problem of hydro code is the lack of solid state effects
Quasi-steady-state behavior has important consequences

• It confirms the absence of significant hydrodynamic expansion, preserving the uniform, slab structure of the heated foil

• It yields an uniform state that is characterized by the direct observables of mass density ρ_o and excitation energy density $\Delta\varepsilon$

This ensures realization of the Idealized Slab Plasma concept in isochoric heating of a solid by fs laser
The quasi-steady state validates single-state measurement of AC conductivity

- Probe \{R^*, T^*\} data for quasi-steady state used to solve Helmholtz eqs. for EM wave in a uniform dielectric slab
- This yields \(\sigma_\omega(\rho_o, \Delta\varepsilon) \) as direct benchmark for theory

Results obtained from 800nm, S-pol probe
We can learn more if we assume nearly free electron behavior

- Nearly free electron behavior is expected
 - Absence of interband transition at 800 nm
 - Conductivity effected by electrons near Fermi surface

- Drude model:
 \[
 \sigma(\omega) = \sigma_r + i\sigma_i = \frac{\sigma_o}{1 + \omega^2 \tau^2} (1 + i\omega\tau),
 \]
 \[
 \tau = \frac{\sigma_i}{\sigma_r} \frac{1}{\omega}, \quad \sigma_o = \sigma_r (1 + \omega^2 \tau^2), \quad n_e = \frac{m_e \sigma_o}{e^2 \tau}
 \]
This extends our single-state data to include τ, σ_0 and $<Z>$.

At normal conditions:

$\sigma_0 = 4.1 \times 10^{17} \text{ s}^{-1}$

$n_e = 3.8 \times 10^{22} \text{ cm}^{-3}$

Widmann et al.,
PRL 92, 125002 (2004)

Drude behavior of σ at 800nm is subsequently confirmed.
The data provided the first benchmark of Purgatorio in the WDM regime

S. Hansen, B. Isaacs, V. Sonnad, P. Sterne, B. Wilson

- **Purgatorio Code**
 - Neutral-pseudo atom model
 - Dirac equ. for bound wave functions
 - Phase shifts by matching numerical wave functions to analytical forms at ion sphere radius
 - Bound & continuum electron density from Fermi distribution
 - Inelastic crystal structure factor [Baiko et al., PRL 81, 5556 (1998)]
 - Electrical resistivity from extended Ziman formulation

- Agreement in σ_0 for $\Delta \varepsilon < 10^7$ J/kg
- Discrepancy in τ, n_e
- Need for multi-parameter tests
What is the phase of the quasi-steady state?

- Calculations of equation of state and transport properties require phase information, solid versus liquid, to determine the structure factor of the state.

- The identity of the quasi-steady state is also key to understanding non-equilibrium phase transitions induced by ultrafast excitation.

The immediate questions are

- If the lifetime of quasi-steady state is governed by stability of the lattice, is the limit set by a critical value of lattice energy density and can it be determined?

- Does the quasi-steady state retain any long or short range order?
To determine lifetime of quasi-steady state, we probe hydro expansion with FDI.

Diagram:
- **Pump** (150fs, 400nm)
- **CCD**
- **PD**
- **Au 30nm**
- **Spectrometer**
- **Michelson Interferometer**
- **Probe** (150fs, 800nm)
- **R**
- **Δt**
- **T**

Text:

To determine lifetime of quasi-steady state, we probe hydro expansion with FDI.
Quasi-steady state is confirmed in six different measurements.

S-pol \{R^*, T^*\}

P-pol \{R^*, T^*\}

S/P-pol \Delta\phi

\[3.5 \times 10^6 \text{J/kg}\]

\[3.5 \times 10^6 \text{J/kg}\]

\[3.8 \times 10^6 \text{J/kg}\]

\[4.0 \times 10^6 \text{J/kg}\]
To quantify quasi-steady state duration, we use an extensive set of S-pol FDI data.
What are the processes governing solid-plasma transition in the heated foil?

- Laser heating of s/p electrons and photo excitation of d-electrons
- Electron-hole recombination
- Electron-electron thermalization
- Escape of heated electrons forming a surface sheath; sheath thickness is limited by space charge field
- Lattice heating effected by electron-phonon coupling
- Melting of the lattice
 - Ultrafast, non-thermal melting?
 - Thermal melting to meta-stable superheated liquid?
 - Superheated solid?
- Disassembly of the superheated state into a plasma
To describe lattice heating, we use a modified Two-Temperature Model

TTM:

\[
C_e(T_e) \frac{dT_e(t)}{dt} = -g \left[T_e(t) - \varepsilon_l(t) \frac{\rho_{Au}}{C_l} \right] + S(t)
\]

\[
\rho_{Au} \frac{d(\varepsilon_l(t))}{dt} = g \left[T_e(t) - \varepsilon_l(t) \frac{\rho_{Au}}{C_l} \right], \quad \varepsilon_l(t) = \frac{C_l T_l(t)}{\rho_{Au}}
\]

Electron-phonon coupling: \(g = (2.2 \pm 0.3) \times 10^{16} \text{ W/m}^3\text{K}^* \)

Heat capacities: \(C_e(T_e) = \frac{\partial U_e(T_e)}{\partial T_e}, \quad C_l = 2.5 \times 10^6 \text{ J/m}^3\text{K}^\dagger \)

Laser energy deposition: \(S(t) = \frac{\Delta \varepsilon \rho_{Au}}{\tau_P \sqrt{\pi}} \exp \left(-\frac{t^2}{\tau_P^2} \right) \)

†Maxmillian's Chemical and Physical Data, Maxmillian Press, London, 1992
We postulate that disassembly is a rate-independent critical phenomenon.

- Quasi-steady-state duration $\Delta \tau$ is determined by a critical value ε_D independent of heating rate (or $\Delta \varepsilon$)

$$\Delta \varepsilon = 4.2 \times 10^6 \text{ J/kg}$$
The heating-disassembly model shows good agreement with observation

- This yielded the first measurement of the critical lattice energy $\epsilon_D=(3.3\pm0.3)\times10^5$ J/kg for solid-plasma transition under ultraviolet laser excitation

\[\Delta\Phi \text{ S-pol data} \]
\[g=1.9\times10^{16} \text{ W/m.K, } \epsilon_D=3.0\times10^5 \text{ J/kg} \]
\[g=2.5\times10^{16} \text{ W/m.K, } \epsilon_D=3.6\times10^5 \text{ J/kg} \]

To probe long/short range order in quasi-steady state, we use broadband dielectric function

- For Au, intra & inter-band transitions in 450-800nm of $\varepsilon(h\nu)$

- $\varepsilon(h\nu)$ determined from \{R*, T*\} of supercontinuum probe
180fs, 800nm laser is focused onto CaF$_2$ to generate a 450-800nm supercontinuum probe

Probe illuminates nanofoil at 45°-incidence in 30µmx600µm line focus, covering both heated and unheated regions

In-situ calibration eliminates the need for
- Absolute intensity calibration
- Measurement of shot-to-shot variation in probe intensity
Frequency chirp in supercontinuum is measured using Kerr optical gate

- Supercontinuum provides spectral measurements from 450-800 nm
- Frequency chirp gives rise to time-encoded spectrum
 - To remove effect of chirp in measurements
 - Bin spectral data in 10nm intervals
 - Apply temporal shifts using chirp data

![Graph showing frequency chirp in supercontinuum](image-url)
Temporal evolution of $\varepsilon(h\nu)$ of Au at 2.9×10^6 J/kg

Data corrected for frequency chirp

- Quasi-steady-state behavior seen in 1.2-4 ps consistent with earlier finding [Ao et al., PRL 2006]

- $\varepsilon_1(h\nu)$ relatively featureless

- $\varepsilon_2(h\nu)$ shows distinct components
 - Intraband transitions below 2.3 eV
 - Enhancement in transitions
 - Overshoot at 1.55 eV similar to previous observation
 - Interband transitions above 2.3 eV
 - Enhancement in transitions
Dependence of $\varepsilon(h\nu)$ of Au on excitation energy density $\Delta\varepsilon$

- **For** $\Delta\varepsilon$ of 2.6×10^6, 4.7×10^6 J/kg
 - The 1.4-2 ps probe delay falls within the quasi-steady-state

- **For** $\Delta\varepsilon$ of 1.7×10^7 J/kg
 - Disassembly occurs at 2.38 eV for a probe delay of 1.9 ps, consistent with previous data

- Intra band transitions
 - Enhancement with $\Delta\varepsilon$
 - Drude behavior

- Inter band transitions
 - Enhancement with $\Delta\varepsilon$
 - Increasing red shift with $\Delta\varepsilon$
Drude behavior in intra band transitions points to discrepancy in $\sigma(h\nu)$ calculation

- Spectral structures in $\sigma(\omega)$ above 1.3 eV were reported [Mazevet et al., PRL 2005]
 - Sampling of Brillouin Zones over only $\sim 8^3$ k-points

- Limited BZ sampling can lead to spurious spectral structures [T. Ogitsu & E. Schwegler]
 - fcc Au at 0 K
 - Convergence is reached with 128^3 k-points

ε_2 data in disagreement with calculations lacking treatment of non-adiabatic effects of electron-phonon coupling
The prominence of inter band transitions raises many interesting questions

- Persistence of d-band in the quasi-steady state
 - If d-band is the result of long range order, this would be first evidence of the quasi-steady state being a superheated solid

- Red shift can be due to temperature-induced changes in the energy distribution of the electrons

- Enhancement is likely a non-equilibrium effect
 - Equilibrium calculations for Al shows disappearance of interband transitions at melting (Benedict et al., PRB 2005)
 - Photoemission spectroscopy on fs-laser excited Au at 300μJ/cm2 shows residual non-thermal electron distribution after 670fs (Fann et al., PRB 1992)

Summary

- The *Idealized Slab Plasma* Concept has been realized in *Isochoric Laser Heating*.

- This has become a unique platform for the study of non-equilibrium, high-energy-density Warm Dense Matter free from gradient effects:
 - Electrical conductivity
 - Lattice energy density for solid-plasma transition
 - Persistence of band structure in quasi-steady state with non-equilibrium electron DOS

Warm Dense Matter an emerging frontier in plasma & CM science
- 2002 LLNL Workshop on Extreme States of Material: WDM to NIF
- 2002 US-France Workshop on WDM
- 2003 CECAM Workshop on QMD Approaches of WDM
- 2006 Accelerator-Driven WDM Workshop
- 2006 Lansce Dynamic Experiment Facility Workshop