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Suggested Bible

Charles K. Birdsall and A. Bruce Langdon, Plasma 
Physics via Computer Simulation, (McGraw Hill
1985). Chaps. 1 and 2 suffice.
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All you need to know about beams …

Maxwell’s Equations:

Lorentz Force Law:
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Some simple cases don't need simulation

V is surface charge density

x
0 D

VI=0 I=V
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Theoretical Approach (this course, Reiser's book)

Simplify problem sufficiently to solve, e.g.:
• Single particle wandering through known lattice

• “Cylinder” beam with uniform density distribution

Even “analytical” cases like this often require computers to 
solve (numerical integration).
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Problem 1: Real Beams are not K-V

1.0 cm

Q1 Q3 Q4T Q2

1.0 cm

Semi-Gaussian Distribution

Hollow-Velocity Distribution

Experiment (100 mA) (top) [Bernal]

WARP Simulation (below) [Kishek ]
K-V Distribution
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Problem 2: Real Accelerators are Very Complex

The University of Maryland Electron Ring (UMER)
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Problem 3: Realistic Geometries May be Difficult

Electron Gun

K

A

1 cm

Grid
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Problem 4: Real Accelerators are Expensive
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Computation has Many Advantages:

1. Verification of simpler analytic models.
Layers of complexity can be added or removed at will 
from the computer model.

2. Understanding and interpreting experimental results.
Simulation is much easier (and cheaper) to set up and 
perform than experiment.

3. To facilitate design of large, expensive accelerators.
The computer model can be used to study the physics of 
a large accelerator well before such an accelerator can 
be constructed.
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Simulation

For real beams:
• Self-Fields linear only for uniform beam density

• Emittance conserved only for linear fields

• Envelope equation valid only if emittance conserved.

In general, evolution of beam size, emittance, and particle 
trajectories can be complicated and difficult to predict analytically.

Central issue:  What happens to charged particles in an 
environment of electric and magnetic fields?

Simulation : Applying physical laws (approximately) to 
model reality on a computer
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Where Does Simulation Fit in?
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Particle Simulations



15

Galaxies face similar issue-how to model 1011 stars?
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Coulomb’s Law
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Gravity – same form, different sign
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Classification of Computing Methods

Lund Notes - classify by the way the beam is 
represented:

• Particle Methods
• Distribution Methods
• Moment Methods
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Approach

• Start with simplest brute force approach

• Find out problems with that approach

• Add some sophistication

• Find out problems

Each technique has its own strengths and weaknesses

Need to be aware of the boutique of available 
computational methods
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Rami: Classification by Physical Laws (Loose) 

Maxwell’s Equations:

Lorentz Force Law:
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Specific Needs Behind Computing

• Field Solvers :  Calculating the electromagnetic fields 
affecting the particles.

• Particle Trackers :  Calculating particle trajectories in 
those fields.

• Calculating electric and magnetic fields generated by 
those particles.  Self-Consistency o Particle-in-cell (PIC) 
Codes .

In most realistic situations, these factors are difficult to 
derive analytically.

Analytical models typically employ drastic simplification, 
which may or may not result in correct predictions.
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Types of Accelerator Codes

Field Solvers

Static
Poisson
COULOMB

Eigenmode
YAP

Time Domain
MAFIA
AMOS
GDFIDL
Maxwell

Other
SuperFISH

Magnet Design
MAGPC
Maxwell 3D

Particle-in-Cell

Electrostatic
pdp1 / pdc2 / etc.
WARP

Electromagnetic
MAGIC / SOS
OOPIC
ARGUS
VORPAL

Gun Codes

E-Gun

Particle Trackers
Transfer Maps

MaryLie
Matrices

MAD / DIMAD
TRANSPORT

Multi-Particle
PARMELLA/ILLA
COZY

Other
SIMION

Envelope

TRACE
PBOLab
EMATCH
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Other Approaches

Plasma Codes

Fluid model
Vlasov-Poisson model -
Gf Methods
Green’s Function model

Other Accelerator Codes

Mechanical: structural / thermal
/ vacuum (ProE)

Radiation
Optics; FELs
Controls (LabView; EPICS)
Data Processing 
Systems

Hybrid Codes

Particle-core model:
Envelope or PIC model for 
beam bulk (core); 
Tracking of halo particles. 

PIC + map codes:
use PIC for self-fields;
transfer maps for external

Fluid + Envelope: (CIRCE)
Fluid for longitudinal;
Envelope for transverse
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A Few Notes of Caution

• Successful codes are usually tremendous projects
• You really don’t want to develop a new code if an 

existing one contains suitable approximations
• Sometimes a “less accurate” approximation can work 

better than more sophisticated models
• GIGO: The results you get are (at best) as good as the 

input you put in
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Multiparticle Model
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Number of Interactions ~ N p
2
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N-Body Problem

• Typical beam contains ~ 109 particles.

• Typical galaxy contains ~ 1011 stars.

• Laboratory plasmas may contain 1012 - 1015 cm-3 and
inertial fusion plasmas up to ~ 1022 cm-3.

• Even with 109 particles, calculation of particle-particle 
interaction for every particle implies 1018 calculations
to determine the forces.

• Once particles are advanced, forces change, and 
all 1018 interactions have to be recalculated.
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How Do We Simplify?
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Approximation #1: Macroparticles

• Instead of accounting for every particle, take a 

statistical sample of particles o Macroparticles .

• A macroparticle is a special particle which carries the 
weight of a large number of particles when used to 
calculate the fields exerted on other particles.

• In response to a given field, the macroparticle moves 
as if it were a regular test particle.

• E.g, 109 particles o 105 particles.
Still have to deal with 1010 calculations.

Number of calculations ~ n p
2.
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Notes on Sampling

For Approximation to be valid, need to ensure:

• Number of macroparticles should be sufficiently large 
to give good statistics.

• Average behavior and distribution of macroparticles 
should resemble that of real beam.
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Observation
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Approximation #2: Fields not Forces

• Do not deal with every possible interaction.

• Instead, use the concept of fields or potentials:
i. Interpolate particle positions onto grid to determine charge 

density.

ii. Calculate Fields as in previous lecture.

iii. Interpolate fields to position of each particle to determine 
force.

Total number of calculations ~ n p

• In addition, have to do field calculation which for a 
2D FFT ~ nx

2 log nx
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Uniform distribution 
of particles confined 

by external field 
I(r) = Ie(r) + Is(r)

How (When) is This Possible?

Grid method ignores close-collisions (interactions between 
particles within same cell).

This is justified in reality when large number of particles

Boltzmann distribution:

� � � � � � � � � �
2

s
B B

e r e n r
r en r r

k T k T

§ ·I
U  | I¨ ¸

© ¹
exp

Solve for Potential from Poisson Equation:

� � � � � �
2

2 2 s
s2

o o B

r e n rd1 d
r r

dr dr k Tr

UI§ ·
� I   �  � I¨ ¸ H H© ¹

� �
o D

r
exp

q
r

4 r

§ ·
�¨ ¸OH ©

I  
¹S

OD

o B
D 2

k T
e n
H

O  
Debye Length

Reiser Sec. 4.1
Birdsall Chap 1



33

How Do We Model 109 particles?

34

Galaxies Can Be Similarly Treated
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Debye Shielding

If:

Large number of particles (# particles in Debye sph ere = 
nOD

3 >> 1)

OD < R   (Space-Charge-Dominated)

Force from “collective” potential >> force from nearest neighbors

Probability of individual particle-particle interaction 
(Coulomb collisions) << collective interaction

Can use grid to model space-charge-force

Grid needs to be small enough enough to resolve potential 

variations (Rule of thumb 'x ~ OD/3)

Otherwise, individual “collisions” important and need be modeled

Particle Tracking and Numerical Methods

Rami Kishek
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Particle Trajectories: x-x’ Phase Space

x'

x

3

Pushing Particles (Tracking)

Maxwell’s Equations:

Lorentz Force Law:
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Computer Limitations

• Computers can only handle numbers (binary, no less).

• Computers can only perform simple arithmetic (no
differentiation).

• Furthermore, computers can only handle a finite
number of data.  Continuous functions (made of 
infinite number of “points”) must be discretized.

• Can only deal with bounded problems.
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Particle Pushing

� �J

 

 

JK

K

JK K

dx
v

dt
d

F mv
dt

Equations of Motion
(Newton)

To determine position of a particle as a function 
of time in response to a given force, need to 
integrate equations of motion.

Note: Forces can be time-dependent.

Know derivatives of function – want to predict 
function’s future values
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P
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on

, x

step size

discretization
error

rounding error

• Particle positions and velocities change continuously 
with respect to time, but computer can hold only finite 
number of quantities. 

• Hence treat time (or s) as a discrete quantity:  care 
about particle positions and velocities only at discrete 
instances of time.

Time Discretization
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Time

P
os

iti
on

, x

(t1, x1)

(t2, x2)

slope = (x 2-x1)/(t2-t1)

Tangent,
v = dx/dt

prediction from 
Euler method

Euler Method

As 't = (t2-t1) o 0, then slope o dx/dt



8

Forward-, Backward-, & Central-Differences

Forward- and Backward- Differences Converge as 's

Central-Difference Converges as ('s)2
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Accuracy of Difference Method

Taylor Expand arbitrary function:

Subtract 2 Equations:
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Discretization Errors

Can reduce errors in 2 ways:

– Use smaller time steps

– Use higher-order integration technique which converges 

faster as a function of time step.

Examples,

Euler method converges as 't or 's

4th-order Runge-Kutta converges as ('t)4.

Center-Difference Methods converge as ('t)2.
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LeapFrog Methods

� � � � � � � �2
tx t t x t t v t '� ' # � ' �
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t tmv t mv t t F tJ J' '� # � � '

Eqns of Motion: 2 first-order differential equation
center-difference expansion of each

Notes:

Positions and Velocities not known at same points.

Electric forces depend only on particle positions.

Get ('t)2 convergence for only one calculation per step 
per equation.

Pair not self-starting.  Need to integrate backwards 1/2 
step to start.
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The Leap Frog

X
F

X
F

X
F

v v v

t

)2/()()( ttvttxttx '�u'� '�

mtFtttvttv /)()2/()2/( u'�'� '�

Note that the forces depend only on the particle po sitions.
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• Only second order but simple (and appropriate because of 
truncation errors in field solution).

• Solves an easy to visualize physical problem, i.e. gives the 
correct answer for a force which is constant over the 
integration interval

• Symplectic
• time-centered and reversible, I.e. simulation can be run 

backward
• Langdon called these characteristics “virtuous”. 

Why use leapfrog ?
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Implications of Leapfrog

• To obtain useable output, velocity and position of 

particles must be measured at the same time.

• Therefore, at all instances of time in which diagnostic 

output is desired, the calculation must be advanced 

1/2 step to synchronize position and velocity o semi-

Leapfrog.

• This is expensive.

15

Integrating the envelope equation

• Can use same methods for general purpose 
integration



Computation in Beams: Field Solvers

Rami Kishek

2

How Do We Model 10 9 particles?Review:
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Solving for Fields

Maxwell’s Equations:

Lorentz Force Law:
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Static Approximation (steady state)
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Electrostatic Case

First Equation, allows us to define 
electrostatic potential, I:

0E�u  
JK JK

E I ��
JK JK

E I�x  ��x�
JK JK JK JK

2 2 2
2

2 2 2
ox y z

I I I U
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w w w
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w w w

Poisson Eqn

If no space charge, U�= 0,
2 0I�  Laplace’s Eqn
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Solving for E-S Potential numerically

Divide space into grid.

Quantities (e.g., 
charge density, 
potential) defined on 
the grid.

ii-1i-2 i+1 i+2 i+3

j-2

j-1

j

j+1

j+2

j+3

'y

'x

Ii,j

Boundary



7

Boundary Conditions

Dirichlet B.C.: I(border point) = constant

Neumann B.C.: 

0 for conducting 
boundary

const
x
Iw
 

w

8

Other Gridding Geometries Possible

Alternative gridding 
may be more suitable

However, Pay a Price:

- Difference equations
more complex

- Resolution varies in 
different parts of beam

- Gridding may 
introduce unphysical 
behavior

Adaptive Mesh (grid size changes with location to model 
details at higher resolution).  Again more complex.

HW Problem
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Forward-, Backward-, & Central-Differences
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Accuracy of Difference Method
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Transform Poisson’s Equation

Derivative � Finite Difference
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Finite-Difference Form of Laplacian Operator
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Poisson’s Equation
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Can generalize to 3-D …



15

A. Tridiagonal matrices : 1-D Problems 

B. Finite-Difference Methods : (for higher-D)

• Gauss-Seidel: Iteration

• Successive Over-Relaxation (SOR): Enhanced Iteration
Most general method.

• Multi-grid Methods: SOR with changing grid size each 
iteration.

• Conjugate Gradient : Sparse Matrices

C. Fourier Transforms .

Algorithms for Solving Coupled Difference 
Equations
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A.  Tridiagonal Matrices
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B.  Finite Difference Methods

1. Write Difference equations for each point on the grid.

2. Results in system of N coupled algebraic equations
with N unknowns where N is the number of 
gridpoints.

3. Can solve, in principle at least.

In practice, for large N, or for complicated boundaries, 
system can be difficult to solve.  For example, inversion of 
large matrix not computationally efficient.
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Iterative Solution Procedure (Gauss-Seidel)

1. Initial guess of I at all points.

2. Calculate charge density and load on grid.

3. Impose Boundary Conditions

4. Generate Next Guess by calculating potential at 
each point from existing data.

5. Iterate until solution converges (typically some 
200 iterations).
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ii-1i-2 i+1 i+2 i+3

j-2
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j+1
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j+3

Boundary

Demonstration
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Successive Over-Relaxation (SOR) Method

Define Residual for each iteration, n:

� �
, , ,
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1
4

i j i j i j

i j i j i j i j i j

n calc nR I I

I I I I I
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1� �n n nRI I Z
Over-relaxation

coefficient, 1 d Z d 2

Obviously, solution converges when R = 0
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Notes on SOR method

Check for yourselves:

Z = 1 corresponds to simple averaging and iteration 
(Gauss-Seidl)

Z = 2 corresponds to overshooting so as to achieve faster 
convergence.  Gives more weight to new value of I.

Convergence still SLOW!

E.g., for an n × n 2-D grid, calculation time ~ n 3, since need 
order n iterations to propagate errors out of mesh.
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So Why use SOR?

Finite-Difference gives closed set of equations, so can 
solve in principle.

Solution can get messy for complicated geometries.

SOR does not care about complexity of boundaries!
Takes about as much time to solve a complicated problem as 
a simple one, for a given number of grid cells.
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Multi-Grid Iteration

30 V

20 V

35 V

15 VFaster than SOR for same resolution
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C.  FFT Methods

Much faster than SOR - no iterations are needed.
Basic idea:

Transform to Fourier Domain

Differentiation becomes multiplication

Transform Back to spatial domain

� �
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See Lund Notes
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Why FFT?

Takes advantage of Fast Fourier Transform routines, 

hence converges much faster:

FFT of N points takes ~ N log N calculations

For n × n 2-D grid, total number of points N = n2, so FFT 

converges as n2 log n2 = 2 n2 log n

Better than n3
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Limitation of FFT Method

Can only implement simple boundaries, e.g., round pipe.

To include conducting boundary, calculate equivalent 
image charge needed to produce zero-potential on it.

1. Calculate a capacitance matrix relating potential on 
boundary points to image charges at the boundary.

2. Solve for the potential without any images.

3. Multiply the potential at the boundary points by the 
capacitance matrix to get the induced images.

4. Add the images to the total charge and recalculat e the 
potential.
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Magnetostatic Calculations

Frequently desire to know magnetic field of a DC 
electromagnet.  Know current configuration, want B-
field.

Possible methods:
– Vector Potential
– Biot-Savart Law
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Electromagnetic

Use full set of equations.
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Wave Equation
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Notes on Electromagnetic Calculations

• In general more difficult to solve.

• Time needs to be discretized as well.

• For leapfrog algorithms, x and v not known 

simultaneously.  Hence, U, and J, and consequently E
and B not known simultaneously either. 

• Leads to instability if  c 't > 'x

Courant Condition: � �2

2 2

1 1
1c t

x y
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Particle-in-Cell Codes (PIC)

Rami Kishek

2

Self-Consistent method for solving 
Maxwell’s Equations and Lorentz Force Law :

Uses macroparticles to sample actual particles 

Represents fields on a grid .

Particle-in-Cell (PIC)
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Initialization:
Fields, Particles, ...

Periodically:
Checkpoint,
Send Graphs

to File

Every Step:
One-liner out

(to file)

Cleanup: Save Data, Postprocess,
Additional Plots

Structure of a PIC Code

Run Loop:
- Load Particles on Grid
- Calculate Fields
- Interpolate Fields 

to Particle Positions
- Update Velocities
- Push Particles

4

Components of a PIC code

• Field Calculation
• Particle Pushing
• Interpolation schemes
• Particle Loading
• Diagnostics and Output.
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Interpolation Schemes

Nearest Gridpoint (NGP)

Cloud-in-cell

Higher-Order

6

Particle Loading

• Populating Phase Space

• Random number generation

• Initial distributions
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Particle Simulation Caveat: Particle Loading

Populating Phase Space:
“Pseudo-Random” vs. “Quiet Start”

x

vx

x

vx
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Particle Simulation Caveat: Particle Loading

Populating Phase Space:
“Pseudo-Random” vs. “Quiet Start”
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The Dangers of “Quiet-Start”

10

Enhancing Speed

• Symmetry
• Filtering
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Self-Consistency

• With sufficient space charge, forces generated 
between particles need to be included in model.

• Motion of the particles will change these self-forces, 
hence the calculation needs to be updated as the 
particles move, e.g., every time step.

• Space charge forces can be represented in several 
different ways, e.g., as an averaged linear force, etc.

• We are primarily interested in a representation of 
space charge forces that is self-consistent with the 
particle model.

12

Output

• 1/2 Time step to synchronize position and velocity 
before recording output.  Visualization is an important 
aspect.

• Real-time interactive graphics vs.. No Output!
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One-liners: a Suitable Compromise

One line of text for each step listing values of selected 
variables.  Useful for keeping an eye in case anything 
goes wrong, e.g.,

it =    30 zbeam =   0.45000 2*xrms =    9.52 emity =   58.55 nplive =     1000

it =    40 zbeam =   0.60000 2*xrms =    9.81 emity =   58.56 nplive =     1000

it =    50 zbeam =   0.75000 2*xrms =   10.11 emity =   58.56 nplive =     1000

14

Graphical Output

• Graphical output is for human consumption.

• Need graphics in order to condense the massive 
amounts of data generated by simulation.

• Need to display it in presentable form.

• Graphical output also useful for comparison of 
different simulations.
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Sources of Error

• Macroparticle Statistics

• Discrete Time Step

• Discrete Potential (gridcells)

• Input and initialization errors; particle loading

• Modeling issues

1

Advanced  Computing Topics

Rami Kishek
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Parametric Resonance

Envelope oscillations

Particle oscillations

Envelope oscillations

Particle oscillations

3

1.0 cm

24 mA, 
10 keV

1.0 m

S. Bernal (PAC ’03)

First UMER Experiments 
(during construction)

Rotated Beam

RMS
Mismatched
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Dynamic Range Problem

• Interested in halos.

• Halos can contain as little as 10-5 particle density as in 
the main beam.

• Resolving that accurately requires very good particle 
statistics.  For a PIC code, this means 109 particles,
or more.

5

Possible Solutions

1. Enhance Speed of PIC codes:

– Sub-Cycling: do not solve for fields at every step

– Split-operator techniques (maps + PIC)

2. Particle-Core Models

3. Subtract out main beam particles, I.e., look only at 

halo or perturbation Ä Gf

4. Direct Solution in terms of particle “density” Ä
“Vlasov Solvers”

5. Hybrid Codes
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2. Particle Core Model: Edge Lensing

F = 0.7, V
0
= 76

0
, S = 0.32 m

a = 5 mm, K = 3.0x10
-4

, H= 57 Pm
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Bernal
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Matrix Techniques and Maps
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TRANSPORT: Library of lattice element matrices

TRACE: Advances beam ellipse using matrix models of lattice

MARYLIE: Lie mapping of lattice elements, can handle nonlinearity
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Following slides courtesy of VNL …

Alex Friedman, Ron Davidson, Eric Sonnendrucker, 
Wei W. Lee, Bill Sharp, & Dave Grote
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initial

E.g., Electron-Proton 2-Stream Instability, growing from initial noise
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t= 200/ZE

3. Perturbative (Gf) Method:  PPPL code BEST

x
y

Offers reduced noise for detailed studies of instability, beam-
plasma, and electron processes.

Dipole “surface mode” can be destabilized by backgr ound electrons

For each particle,
ƒi = ƒi0 + Gƒi

Evolve Gƒi step-by-
step along orbit

In a nonlinear 
calculation, orbit is 
computed using full 
field E 0 + GE
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Review: Computation: Vlasov Solvers

No particles!

6-D (4-D) grid

– Define density in phase space, f(x,y,z, vx,vy,vz)

– Evolve by numerically solving Vlasov Equation

Advantages:

– Get smooth distribution at all times, no numerical collisions.

Disadvantages:

– Grid very large compared to PIC code with same resolution 
(e.g. 1282 = 16.3k; 1284 = 268M).

– Advancing each cell requires interpolation every time step.
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4. Semi-Lagrangian Vlasov Solver (SLV)

Black contour lines: 0.1, 0.01, 0.001, 0.0001, and 0.00001 of peak

The distribution function ƒ(x,v) is retained at nodes of a 4-D mesh

The calculation reaches backward in time along a ch aracteristic (orbit in 
phase space) to obtain the current value of ƒ at each node

Thus, Low-density and high-density regions of phase space are tracked 
equally well ; this is useful for halo studies
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5. Moment methods (e.g. CIRCE)

• Physics model: 
– longitudinal: hundreds of “slices” in a Lagrangian fluid 

model
– transverse: each slice evolved using envelope and 

centroid equations

• Applications:
– acceleration and compression schedules, “ears”
– error tolerances
– beam sensing and steering

• Limitations (perhaps not fundamental ...):
– no model for emittance growth or phase-mixing of 

“mismatch”
– no module impedance model
– slow variation along beam assumed

13

The beam’s current and velocity must be tailored to 
achieve compression and pulse shaping (CIRCE calculation)
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Testing: A Case Study on Validation

Rami Kishek

AMSC 664 2

Quote of the Day

“After you break up with your girlfriend, it takes 
twice as much time to get over her as the time 
you actually spent together!”

- a friend of mine

“After you think you’re done writing a program, it 
takes you twice as much time to debug it as the 
time you actually spent writing it.”

- my rule of thumb
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WARP Code

• Electrostatic Particle-in-Cell (PIC) Code.

• Flexible Geometries: 2-D (x-y, r-z) and 3-D.

• Contains various accelerator models for representing 
external lenses.

• Includes many different Poisson solvers (SOR, FFT, 
multi-grid, adaptive meshing).  Subgrid interpolation 
allows for curved boundaries.

• Follows the beam around bends.

AMSC 664 4

5-Beamlet Experiment

simulation experiment

~ 1989
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e-Beam Injector Experiment, 1998-1999

AMSC 664 6

Experimental setup complicated

http://www.ireap.umd.edu/umer/ringdesign/protoinjex per.html
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Phosphor screen photo used to determine size

Intensity

Position along 
screen

Profile across cross-section is hollowed:

Beam Size

AMSC 664 8

Initial Results Disagree

Simulation

Experiment
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Attempted different models to reproduce data

1. Slightly varied initial conditions

2. Slightly varied magnet strength

3. Refined description of magnet fields

4. Added relativistic effects

5. Superimposed effect of beam ends

AMSC 664 10

Beam Ends – a Clever Explanation

Time

Current

Energy

Time

P-screen an Integrating Diagnostic
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Near Perfect Fit
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AMSC 664 12

Beam Ends – an Explanation?

• Perfect agreement between simulation code and 
experiment …

• … without either of them agreeing with reality

• Testing the Hypothesis: Experiment with different 
pulse lengths

Time

Current
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One day in the lab, however, caught a strong hint

Intensity

Position along 
screen

Calculated Power 
Deposition on 
Phosphor screen:

Too much!

AMSC 664 14

Attempted Explanations of Disagreement

• Wrong magnetic fields or initial conditions - Sensitivity
Studies (Solenoid Strength, Initial Slope, Emittance)

• Possibility of head and tail particles smearing 
measurement - P-screen an Integrating Diagnostic

• Code problems?  Benchmarked some other published 
experiment - OK.

• Experiment: P-screen damage?  Power deposition
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Opened Up Experiment: found many things wrong

1. Phosphor-screen was damaged

2. Initial conditions (measured using screen) were 
wrong (by factor of 2)! 

3. Hence, magnets were also set for wrong values in 
experiment

4. Magnetic field used in simulation not exactly as 
experiment

5. Camera system dated to 1980s, needed replacement

6. Processing of experimental data slow – used image 
processing to automate and enhance

AMSC 664 16

Another Problem: Solenoid Magnet Field Profile
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Revision of experiment and simulation resulted in 
much better agreement

AMSC 664 18

Agreement also in density profile

S. Bernal, et. al., PRL, 82, 4002 (1999).

Z=17 cm 27 cm 35 cm 42 cm 50 cm 58 cm 66 cm 74 cm

1 cm

ZZZ=26 cm 36 cm 46 cm 56 cm 66 cm 76 cm 86 cm

1 cm

Z=50 cm 70 cm 90 cm 230 cm110 cm 130 cm 150 cm 170 cm 190 cm 210 cm

Experiment

Experiment

Simulation

Simulation

Simulation


