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S1: Vlasov Model: Transverse Vlasov model for a coasting, single species beam
with electrostatic self-fields propagating in an applied focusing lattice:

X1, X/J_ transverse particle coordinate, angle

q, m charge, mass f €L (XJ-a XIJ.) S ) single particle distribution

Vo Ob axial relativistic factors H, (X 1, X/J_, S) single particle Hamiltonian
Vlasov Equation (see J.J. Barnard, Introductory Lectures):

d 0 dx, 0 dx', 0
L. fo axi f¢+ L f,L:O
ds 0s ds 0x| ds Ox'|
Particle Equations of Motion:
ix _8HJ_ ix,__ﬁHJ_
ds” = ox/| ds"+ 0x,
Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion):
1,2 1 2 1 2 q
HJ_ = §XJ_ + 5/{33(8).’17 + §/<Ly(8)y + ng

Poisson Equation:

9* 0? q 2.1
(5 o) 0= w1

+ boundary conditions on ¢
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Hamiltonian expression of the Vlasov equation:

d
L=

dx',  0fL

8fL+de.8fL )
0s ds 0x ds Ox/|

OHL 0f.

=0

:6fl+8HL . of L B
0s ox', Ox, Oxi 0%

Using the equations of motion:
d 0H

=0

S, = L
st~ ox', oL
d , _ _9HL . o, 94 99
ds LT ox, (/ix.’L'X T RgYY T+ my; B2 c? axi)
ofL ., 9Ofr . R q ol ofL
+x — | KexX + K + : =0
Os L x| v iy mfyg’ﬁg c? 0x | ox/,

In formal dynamics, a “Poisson Bracket” notation is frequently employed:

if _8f¢+0HL.8fL_8H¢_8fL
ds’t " Os ox', Ox, Oxi 0%
_9fL
88 _I_{HJ_afJ_}_O

A

Poisson Bracket
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Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

Lattice Period Lp

Lattice Period

dy= (1-0)(1-M)L,,

K504 I (K, =K,= kﬁo = const ) ,
i K
- Occupancy 7
4 b) Periodic Solenoid n S [07 1]
ROTL (k) e - Solenoid description
carried out implicitly in
- Larmor frame
N . Ld/2 -W : [see Lund and Bukh,
: i ! d=(1n)L, PRST- Accel. and Beams 7,
e c) Periodic Quadrupole Doublct .
@l (K, =) | . ) 024801 (2004), Appendix A]
q Syncopation Factor &
d; L2,
F Quad - i - 1
| D Quad s Q€ [0, —]
L2 2
: A
e L 1
;_ L, - di=alnL, o = 5 — FODO
i
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Example Hamiltonians:

: : 2
Continuous focusing Kz = iy = k3o = const

¢

q
my; B2c?
Solenoidal focusing (in Larmor frame variables) ~fz = Ry = /f(S )

1 1
H, =-x"+2kx? + d ¢

2 2 my; B2 c?
Quadrupole focusing Kz = —Ky = Kq(s)
1 ) 1 q
H| = X"+ =ky2? — =ky> + —5=5—=0¢
o+ 21 21 my; B c?
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Review: Undepressed particle phase advance 0 is typically employed to

characterize the applied focusing strength of periodic lattices:

x-orbit without space-charge satisfies Hill's equation

2" (8) + Kz (s)x(s) =0

( z(s) ):M@.(s | S)< z(s:) > M, = 2 x 2 Transfer

z'(s) z'(s:) Matrix from
§=38; to S
Undepressed phase advance
1
COS Oy = §Tr M, (s; + Lyp|s;)

Single particle (and centroid) stability requires:

1

§Tr M., (s; + Lp|s;) < 1 — 00z < 180°

[Courant and Snyder, Annals of Phys. 3, 1 (1958)]
Analogous equations hold in the y-plane
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve
the system into an equilibrium + perturbation and analyze stability

Equilibrium constructed from single-particle constants of motion C,

fi=f1({Ci}) equilibrium

<«(
3f¢dCz'_0
- oC; ds

d
ds fL({Ci}) =
Comments:
* Equilibrium is an exact solution to Vlasov's equation that does not change in
4D phase-space as s advances
- Projections of the distribution can evolve in s in general cases
* Particle conversation constraints are in the presence of (possibly s-varying)
applied and space-charge forces
- Highly non-trivial!
- Only one exact solution known for s-varying focusing:
the KV distribution to be analyzed shortly in this lecture.
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 11

// Example: Continuous focusing fi = f1 (H 1)

1,2 1 q
H, = §X/J- + 5’%03(3_ + W(b no explicit s dependance
dfL _0f1 N OH, 0fL O0H, 0fy
ds 0s  Ox/| Oxi Oxy 0%

0 0

4 4
_ 0fL 0H, of. (O0H| 8HL_8HL OH | _0
_8HJ_ 0s GHL a

ox, ox, oOx, 0%

Showing that f; = f, (H ) exactly satisfies Vlasov's equation for

continuous focusing /)
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Typical single particle constants of motion:

Transverse Hamiltonian for continuous focusing:

1,0 1

q
——————¢ = const
m; B ¢

kgo = const

Canonical angular momentum for rotationally invariant systems:

Py = xy' B y:z:’ — const (in Larmor -frame Var.lables
for solenoidal focusing)

Axial kinetic energy for systems with no acceleration:

£ = (5 — 1)mc?® = const
More on other classes of constraints later ...
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Plasma physics approach to beam physics:
Resolve:

fxuxl,s) = fL({Ci}) +ofL(xe,x],s)
P v
equilibrium perturbation  f1 > [0fL|

and carry out equilibrium + stability analysis
Comments:
* Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
* Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for
periodic focusing lattices other than the (unphysical) KV distribution
* Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations
- Itis not clear if smooth Vlasov equilibria exist in periodic focusing
- Higher model detail vastly complicates picture!
* If system can be tuned to more closely resemble a relaxed, equilibrium, one

might expect less deleterious effects based on plasma physics analogies
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 14



S3: The KV Equilibrium Distribution
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., 1959]
Assume a uniform density elliptical beam in a periodic focusing lattice

3

Y Line-Charge:
Elliptical iy -
Bcam }ry A = qn(s)mry(s)ry(s)
- = const
guml?er x Perveance: g\
ensity n =
| 2megmey; B c?
Tx | = const
Free-space self field solution within the beam (see Appendix A)
A .CC2 2
O =— Y + const
2reg | (rg +1y)re (1o +1y)Ty

Particle equations of motion within the beam (Hill's equation if edge radii given):
2Q

x"s+{m s) — }:BSZO

A G A RN OX O]

" o 2Q s) —
vils)+ {”y<$) XOETAOIAC } yis) =0

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 15

If we regard the envelope radii as specified functions of s, then these equations of
motion are Hill's equations familiar from elementary accelerator physics:

2" (s) + Kk (5)2(s) = 0

y'(s) + K5 (s)y(s) = 0

KT (8) = ky(s) — 26
O T O

2Q)

re(s) 41y (5)]ry (5)

Suggests Procedure:
+ Calculate Courant-Snyder invariants under assumptions made
* Construct a distribution function of Courant-Snyder invariants that generates
the uniform density elliptical beam projection assumed
- Nontrivial step: guess and show that it works
* Resulting distribution will be an equilibrium that does not change 4D form as
a function of s

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 16



Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied
focusing fields:

z"(s) + k(s)z(s) =0

As a consequence of Floquet's theorem, the solution can be cast in phase-
amplitude form:

x(s) = Ajw(s) cosy(s)
where w(s) is the periodic solution to
1
w?(s)
w(s + Ly) =w(s)  w(s) >0

Y(s) is a phase function given by

w@:m+£5%5

A; and q; are constants set by initial conditions at g = g,

w” (s) + Kk(s)w(s) — =0

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 17

Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation it follows immediately that

x(s) = A;w(s) cos(s)

x'(s) = Ajw'(s) cos(s) + wf(l; sin ()

or

L A; cosp

g

wr’ —w'x = A; siny

square and add equations to obtain the Courant-Snyder invariant

2
(£> + (w2’ —w'z)? = A? = const
w

* Simplifies interpretation of dynamics
* Extensively used in accelerator physics

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 18



Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations: initial (conditior;s yield:
S = S
x(s) = Aziwg(s) cos P (s) A.; = const
r'(s) = Agiwl (s) cos b, (s) — sin 1 (s) Vai = Yuls = 1)
Wy (S) = const
where
20) 1
w(8) + kg (8)wz(s) — wy(8) — =0
) Ko ) G, a0 )
Wy (s + Lp) = wy(s) wg(s) >0
® ds
identifies the Courant-Snyder invariant
2
T
(—) + (wez’ — wlx)* = A2, = const
Wy

Analogous equations hold for the y-plane
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 19

The KV envelope equations:
Define maximum Courant-Snyder invariants:
£, = Max(A2))
ey = Max(A2)) .

Elliptical
Beam r

These values must correspond to the beam-edge:

Tw(s) = \/aw:v(S) *
ry(s) = Eywy(s) r

The equations for w_and w can then be rescaled to obtain the familiar

KV envelope equations for the matched beam envelope

1" - 20 B 83 B
1. (8) + kg (8)ra(s) rz(s) +ry(s)  13(s) ’
7 — 20 B 65 B
7y () + Ky (s)1y(5) rz(8) +ry(s)  73(s) 0

a5+ Ly) = 12(5) ra(s) >0
ry(s+ Lp) =1y(s) y(s) > 0
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

2
T
(—) + (wea’ — wha)? = A2, = const

Wy

7\ 2 rex — 1l a\?
<—> + (—x L > = (C, = const
Tr Ex
2 / ’ 2
roy — 1
<£> -+ <—yy yg) = Cy = const
Ty €y

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear

combination of these Courant-Snyder invariants that generates the correct
uniform density elliptical beam needed for consistency with the assumptions:

A
fir=——0[C:+Cy—1]

2

* Delta function means the sum of the x- and y-invariants is a constant
* Other forms would not generate the needed uniform density elliptical
beam projection

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 21

The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution:

, A z\” rox! —rla\’
fixi,x,8)=——30|(—) +(——) +

qm2eLey T Ex

Y 2 roy — 1y 2
<—> + <y—y> — 1| = const
Ty €y

d(x) = Dirac delta function

This distribution generates (see proof in Appendix B) the correct uniform density
elliptical beam:

n = T fJ_ - 0 1'2/7"2 4 2/ 9 1
: Ty ry >

Obtaining this form consistent with the assumptions
demonstrates full self-consistency of the KV equilibrium distribution.
- Full 4-D form of the distribution does not evolve in s

- Projections of the distribution can (and generally do!) evolve in s
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 22



Comment on notation of integrals:
- 2" forms useful for systems with azimuthal spatial or annular symmetry

Spatial
o o
/dQZIJJ_---E/ d:z:/ dy ---
— OO — OO
o ™
= / drr / de --- Cylindrical Coordinates:
0 —m x =rcosf
Angular =rsinf
x (0.]
/dQLI}/J_--- E/ dm’/ dy’ -
— 0 — o0
Angular
00 ™ Cylindrical Coordinates:
:/ dr’r’/ do’ --- ' =1"cost
0 - y =1r'sin@’
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 23

Comment on notation of integrals (continued):
Axisymmetry simplifications

Spatial: for some function f(x7) = f(r?)

Cylindrical Coordinates:
/d2au f(x2) :27r/0 dr rf(r?) = 1rcosd
:W/oodr2 f(r?) y=rsinf
0
:7'('/ dw f(w) w = r?
0
Angular: for some function g(x?) = g(r'?)
Angular
o
Cylindrical Coordinates:
/d%i g(x'?) = 27r/0 dr' ' g(r'?) y o — 1 cosf
— ,n./OOdT,/Z g(,r,/Q) y/ =7 sin®’
0

71'/ du g(u) u=r
0

SM Lund, USPAS 2006 Transverse Equilibrium Distributions 24



Moments of the KV distribution can be calculated directly from the distribution
to further aid interpretation:

d?x, [d?z’ e fL
A s ff d%{ B
i
R AT
Restricted angle average: (- >XL = f fd%: 7 f
i

Envelope edge radius:
1/2
re = 2(a%))/

rms edge emittance (maximum Courant-Snyder invariant):

ex = 4[(2?) L (@)L — (22")3]"/?

Coherent flows (within the beam, zero otherwise):
/ o
<.C13 > X/L =Ty T

Angular spread (x-temperature, within the beam, zero otherwisegz

2 2
Sy X Y
T, = (2 — (@) )Py =% (1-% — L
(@ =@ P =5 (177
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 25

Summary of 1" and 2™ order moments of the KV distribution:

Moment Value
J 2t o' fy rEn
J& y'fL Ul
R R
(RPN I
[ a2, wa'fy oty All 1* and 2" order
Jd' wy'fL Loy moments not listed
[d*! (xy' —ya')fo 0 vanish, i.e.,
ton G
(o) i / d*z, zyfi =0
(@) L4
(") :£+ -fr'% <5Uy>J_ = O
{za')y ”‘:i‘
(wy') e
{zy' —ya'h 0
16[(2*) (=)0 — (z2")] £a
16[(y) 1 (™) — (yy')1] £
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Canonical transformation illustrates KV distribution structure:
[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation: TeTy
— dx dy = dX dY
X = co x VEzty
r
TR da' dyf = V"V 4x dy”
X =2 =z TzTy
N dz dy do' dy' = dX dY dX' dY’

Courant-Snyder invariants in the presence of beam space-charge are then simply:

X2+ X"? = const

and the KV distribution takes the simple, symmetrical form:
A X2 X/2 Y2 Y/Z
EAN { REELSE s S 1]
e Ey

fL(«T,y,xl,y/,S) - fL(Xa Y, Xlayl) =

€y Ey

from which the density and other projections can be more easily (see Appendix

. e} 2 2
B) calculated: . /d%i = A / dU2 § [Uz - (1 o y_2>]
0 T

qmreTy r2 2
A 2 /.2 2 /.2
— qmreTy’ x/rm+y/ry<1
0, 2?/r2+ P re > 1
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 27

KV Envelope equation
The envelope equation reflects low-order force balances
4 kgrs — 2Q) _ ﬁ —0 Matched Solution
o T+ Ty r3 rz(s+ Lp) = 15(8)
" 2@ 55 Ty (3 + Lp) = Ty(s)
Ty T oRyTy — o " — % =0

Applied Space-Charge Thermal
Focusing  Defocusing Defocusing

Terms: Lattice Perveance  Emittance

* Envelope equation is a projection of the 4D invariant distribution
* Most important basic design equation for transport lattices with high space-charge
intensity
- Simplest consistent design equations incorporating applied focusing,
space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!
* Instabilities of envelope equations are well understood and real (to be covered:
lectures on Centroid and Envelope Description of Beams)
- Must be avoided for reliable machine operation
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 28



The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Parameters
ry(s + Lp) =ry(s) £, = 50 mm-mrad
Ex = &y 0'/0'0:0.2
Solenoidal Focusing FODO Quadrupole Focusing
(Q = 6.6986 x 1074) (Q =6.5614 x 1077

Edge Radii r; and 7, (mm)

Axial Coordinate s/Lp Axial Coardinabe s/L,

The matched beam is the most radially compact solution to the envelope

equations rendering it highly important for beam transport
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 29

Beam symmetries of a matched KV equilibrium beam in a periodic FODO

transport lattice

Matched Beam Envelope and Focusing Function

T : :
E 2t 1
= |0
=
0
K 6t i, 3
. . |9 0.2 i 0.4 i 06 i 0.8 L
PI'Q] ection 1 ! Axial Coordinate!(Lattice Periods) ! !
1 : | : |
¥ ¥ y ¥ y
X_
area: MryTy 7 const X X X X x
| I I I
x4 ¢ X X X
z Ex Ex Ex
'
X-X
area: TE,; = CONst X X X X

(CS Invariant)

'

y-y

area: T€y = const
(CS Invariant)

I

|

1 1
| L
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KV model shows that particle orbits in the presence of space-charge can

be strongly modified — space charge slows the orbit response:
Matched envelope:

.y 2Q e
R NE R 1A
, 20 e
Ty () + Ky(s)ry(s) 72 (5) +174(5) 7“5(5) 0
re(s+ Lp) = 15(8) rz(s) >0
ry(s+ Lp) = 1y(s) ry(s) >0

Equation of motion for x-plane “depressed” orbit in the presence of space

2Q)
72 (5) +7y(8)]ra(s)

-charge:

2"(s) + ke (s)z(s) —

z(s) =0

All particles have the same value of depressed phase advance:
sitle (g
Or = %(Sz + Lp) - wa:<52) = 53:/
Si T.ﬁ% (S)
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Depressed particle x-plane orbits within a matched KV beam in a periodic

FODO quadrupole channel for the matched beams previously shown
Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits
0.02 ; ; ; ; ; ; ; ]
0.01¢
0

meters

-0.02

-0.01f

Ky

0.

FODO Quadrupole Focusing:

7.5 10 12,5
Lattice Periods

0 25 5

Undep

0.02
0.01

meters

0.

SM Lund, USPAS 2006

0
—0.01}
-0.02p

ressed (Red) and Depressed (Black) Particle Orbits

Ko

7.5 10 125 17.5
Lattice Periods
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Depressed particle phase advance provides a convenient

measure of space-charge strength
For simplicity take (plane symmetry in average focusing and emittance)

Depressed phase advance within a matched beam

sitle (g sitle g
oc=2¢ —¢
/si rz(s) /s r5(s)

lim o = oy
Q—0
Normalized space charge strength Cold Beam
O'/ oo — 0 (space-charge dominated)
e—0
0<oco/op<1
/ 1 Warm Beam
9/00 (kinetic dominated)
— 0
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For example matched envelope presented earlier: repeat periods

Undepressed phase advance: oo = 80° 4.5
Depressed phase advance: 7 — 16° — o/og=0.2 22.5
Periods for

360 degree

Solenoidal Focusing (Larmor frame orbit):
phase advance

Undepressed (Red) and Depressed (Black) Particle Orbits
0.02 ; ; ; ; ; - - 5
0.01¢ 3
-0.01f :
_g_gzﬂﬂ_ﬂﬂﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂm

Ko

meters

0.0 2.5 5 7.5 10 125 15 17.5 20
Lattice Periods

- >
4.5 periods

- >

22.5 periods
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution

For the same focusing lattice, replace any beam charge p(x,y) density by a
uniform density KV beam in each axial slice (s) using averages calculated from
the actual “real” beam distribution with:

oy, = JEE [
fdQCUJ_fdQLU/J_ fJ_

f1L = real distribution

rms equivalent beam:

Quantity KV Equiv. Calculated from Distribution
Perveance Q =q* [d*z) [d?2| fL [|2meo; BEc?)
x-edge radius 7, = 2(:{:2)1/2
y-edge radius 7, = 2(y? IL/ 2
T-emittance &, = A[(x?) | (2"?) | — (x2') ]2
y-emittance =4[y Ly L — (yy) ]2
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Comments on rms equivalent beam concept:

* The emittances will generally evolve in s
- Means that the equivalency must be recalculated in every slice as the
emittances evolve

- For reasons to be analyzed later (lectures on Kinetic Stability of Beams),
this evolution is often small

* Concept is highly useful

- KV equilibrium properties well understood and are approximately correct
to model lowest order “real” beam properties
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Sacherer expanded the concept of rms equivalency by showing that the
equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]
For any beam with elliptic symmetry charge density in each transverse slice:
12 y2 Based on:

P—P(T—Q‘f’r—g) <x%> A

z Yy oz’ * Ameg re + 1y
see J.J. Barnard intro. lectures

the KV envelope equations

" . 20Q) _ 63’(8) =
Ty (S) + Hw(s)rt’f (8) Ty (8) + Ty(s) 7‘5’3 (S) "
" . 2Q _ 65(8) =
Ty (S) + ﬁy(s)ry (8) Ty (8) + Ty(s) TS(S) B

remain valid when (averages taken with the full distribution):

gA )
_— — t _ _
@ 2meomryy By c? cons A=4q / d’zy p = const
= 2( 2>1/2 _ 2 2\ n211/2
he L £x = 4[(x7) L(2"7) L — (za")]]
1/2
Ty = 2<y2>J_/ gy = 4[<y2>J_<y,2>J_ — <yy,>i]1/2

The emittances must, in general, evolve in s under this model

(see SM Lund lectures on Transverse Kinetic Stability)
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Further comments on the KV equilibrium: Distribution Structure
Equilibrium distribution:

f1 ~ 6|Courant-Snyder invariants|

Forms a highly singular hyper-shell in 4D phase-space

/
Schematic: A 4D singular hyper-shell surface

>
X1
+ Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important
(see lectures on Centroid and Envelope Descriptions of Beams)
* Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied

with care (see lectures on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed

as an initial beam state in self-consistent simulations
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Preview: lecture on Centroid and Envelope Descriptions of Beams

Instability bands of the KV envelope equation are well understood in

periodic focusing channels and must be avoided in machine operation
Envelope Mode Instability Growth Rates

Solenoid =0.25 Quadrupole FODO (1 =0.70)

1.0 l 1.0 T
! ln‘yi ‘ 0.5 - Injyg o 1.0
0.8 : 0.8 | E
I— . 0.0 Y50 0.0
S 06 attice 06 Confluent Res
. Band
Q . Res. Band \b
© 04 + 0.4
Lattice
ga] Bes 0.2 |
] ‘
00 ' ‘ 0.0 3
100 120 140 160 180 100 120 140 160 180
G (deg/period) O¢ (deg/period)
[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses
* Not very different from what is often observed in experimental measurements and
self-consistent simulations of stable beams with strong space-charge

* Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge
rde’ jdy f1 Jdyrdy' f1
z

Area 7e;
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Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent
Angular spreads within the beam:

Coherent (flow): Incoherent (temperature):
2 ../ / 2 2 2
o, = ATDATL 0 P ot e = 25 (1- 5 - )
pr— —_— X X -
R P T S TR
2
() oy T, T, = =
A T o2
o v
— Tz i
i T T
: y=0
o —r!
>‘
P Tz T
y=20

* Coherent flow required for periodic focusing to conserve charge
* Temperature must be zero at the beam edge since the distribution edge is sharp
* Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid

model interpretation of the (kinetic) KV distribution
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fﬂéﬁ%@fcﬁﬁmﬁ{}{?iQ%@EJ&‘ﬁE&HH@QHEEQumbﬂum solution for linear
periodic focusing channels that is valid for finite space-charge:
*Low order properties of the distribution are physically appealing
*[llustrates relevant Courant-Snyder invariants in simple form
- Later arguments demonstrate that these invariants should be a reasonable
approximation for beams with strong space charge

Strong Vlasov instabilities associated with the KV model render the distribution
inappropriate for use in high levels of detail:

*Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):
Can a valid Vlasov equilibrium be constructed for a smooth, nonuniform density
distribution in a linear, periodic focusing channel?

*Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant
*Lack of a smooth equilibrium would not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would
be more physically appealing than the KV distribution we will examine smooth
distributions in the idealized continuous focusing limit (after an analysis of the
continuous limit of the KV theory):

* Allows more classic “plasma physics” like analysis

*]lluminates physics of intense space charge

*Lack of continuous focusing in the laboratory will prevent over generalization
of results obtained
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S4: Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, symmetric beam

2
Kz (s) = ky(s) = k,@o = const Undepressed betatron wavenumber
Eg =Ey =€

Tg =Ty =Tp

envelope equation reduces to 1/2
Q< Qb [k @
1 2 — —
Lkt — 2 - =) = | b= = const
b T RpOTe ) 2k5,

Particle orbit in the beam:

/ Depressed
" 2 _ ks = k2 — Q = const
X+ kﬁ x; =0 s B0 7“2 betatron wavenumber

/
—» | x1(s) =xy;cos[kg(s —s;)] + };J_z'
B

sinfkg(s — ;)]

Space-charge tune depression (rate of phase advance same everywhere, Lp arb.)

1/2 o
ks o _(, Q@ 0 = o =1
kg0 oo ]{3%07"% e—0 Q—0
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Continuous Focusing KV Equilibrium —
Undepressed and depressed particle orbits

ks = 2k R—p
B_O'O A0 0'0_.

€T (8) Particle Orbits in Beam

A
envelope

M / undepressed
\/ m > g
depressed

Much simpler in details than the periodic focusing case,
but qualitatively similar in that space-charge “depresses” the

Ty

rate of particle phase advance
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Continuous Focusing KV Beam — Equilibrium Distribution Form

Using
\ = qmiry i = const  density within the beam
for the beam line charge and
o
d(const - z) = (z)
const

the full elliptic beam KV distribution can be expressed as

A z\2 rex’ — 1’ x 2 Y 2 ryy — Ty 2
Jr q7T25w5y [(Tm‘> - ( €z ) - <Ty> - < €y )

A

n
= 2—5(HJ_ —HJ_b)

m
where 1 £2
1= §X/f + Q—TgXi -- Hamiltonian
Lo 1.5 o q9
— Xk
XL T g RBoxL + V3 32 c?
2
Hyp = 57 = const -- Hamiltonian at beam edge
b
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Equilibrium distribution 2

5
= Hip = —5 = const
n 2r

fL(HyL) = 2—5(HL — Hyp) b
m A = const

then it is straightforward to explicitly calculate (see homework problems)

: n= [d°z =
Density: / 1L { 0. 1<t
2. .02 T
Temperature: To = e Lz 2fe _ [ T(—r/r}), 0<r<ny
emperature: b fdQ.’l?/J_ fJ_ O, Ty < T
Density Temperature
A n(r) A TE(T) — /ybmﬁ20252
T = 9,2
A o 2ry
n : T,
! =T,(r=0)
: . >
Tp T T'p r
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Continuous Focusing KV Beam — Comments

For continuous focusing, H 1 is a single particle constant of the motion (see
problem sets), so it is not surprising that the KV equilibrium form reduces to a
delta function form of f1(H1)
% Because of the delta-function distribution form, all particles in the continuous
focusing KV beam have the same transverse energy with H; = H |, = const

Several textbook treatments of the KV distribution derive continuous focusing
versions and then just write down (if at all) the periodic focusing version based on
Courant-Snyder invariants. This can create a false impression that the KV
distribution is a Hamiltonian-type invariant in the general form.

* For non-continuous focusing channels there is no simple relation between
Courant-Snyder type invariants and H |
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S5: Equilibrium Distributions in Continuous Focusing Channels
Take

Kz (S) = Ky(s) = k%o = const

* Real transport channels have s-varying focusing functions
* For a rough correspondence to physical lattices take: kgo = 00/ L,

A valid family of equilibria can be constructed for any choice of function:

1 qo
= H;)>0 H, = - k:
fi=fi(Hy)> 1 2XJ_ + kioXd + —5 55 YR

@ must be calculated consistently from the nonlinear Poisson equation:

2 2
(5 + gz ) 0=~ % [ o)

* Solutions generated will be steady-state (0/0s = 0)
* It can be shown that the Poisson equation only has solutions with (0/00 = 0)

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous

focusing. In periodic focusing channels f, (s) and r,(s) varyin s and the
Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

¢ qn /
7"87"( 87“) _e_:__/d%l fi(Hy)

Introduce a streamfunction

1
W(r) = 511:%07’2 + q;z r=+/x2+ y>?

mey; B2 c?
then
1
H,
=35 X't 4+
and system axisymmetry can be exploited to calculate the beam density as
o0
n(r) = /d%’l fi(HL) = 27T/ dH, fi(H.)
P

Then the Poisson equation can be recast in terms of the stream function as

oY 0 21q? /OO
- s dH H
, 67" ( aq") 2k60 mEO’}/g/BgCQ w(,r,) L fJ.( J_)
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To characterize a choice of equilibrium function fL(HL), the (transformed)
Poisson equation must be solved

* Equation is, in general, highly nonlinear rendering the procedure difficult

Some general features of equilibria can still be understood in terms of moments

* Apply rms equivalent beam picture
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Moment properties of continuous focusing equilibrium distributions

Equilibria satisfy the rms equivalent matched beam envelope equation:

Q 2
k2rp — =~ — = =0
U ry 1y

* Describes average radial force balance of particles
where  (---)) = JdPzy [dPal - fi(HL)
[z, [d?x) fi(H.)

qA 2 2
Sreqm B const Q/ ZL’L/ ) fL(Hy)
“drr3 (CdH | fi(H
2 =), = B Ty L L)

fOOOdT TftzodHJ_ fJ_(HJ_)

Jo drr [SdHL (Hi —)fi(HL)
2 5. 2/.2\ o2 v
e” = 2ry(xT)1L = 2ry [ dr rfdeL SL(HL)
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Parameters used to define

fL(Hy)
should be cast in terms of

Q, &, T
for use in accelerator applications. The rms equivalent beam equations can be
used to carry out needed parameter eliminations. Such eliminations can be highly
nontrivial due to the nonlinear form of the equations.

A kinetic temperature can also be calculated
f d? - fL
a2z’ fi

Ty = ("), (o )x,

n(r)Ta(r) = 3 / Paly X2 (H)) = 2n /¢ CAH, (Hy - 6)f. (HL)

which is also related to the emittance,

[d*z) nTy 2 2 2 o JdPwy nT
C R — =16 =4r,)
fdza,ln € <$ >J_<:Ij >J_ Ty j‘dng_ n
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<CE,2>J_ —

Choices of continuous focusing equilibrium distributions:

Common choices for f) (H, ) analyzed in the literature: , ,
1) KV (already covered)

fLO(5(HJ_—HLb)

H |, = const

=y

H L
2) Waterbag (to be covered) . o
[see M. Reiser, Charged Particle Beams, (1994)]

fJ_O(@(HJ_b—HJ_)
@(az):{ 0, <0

1, 0<z i
fL

3) Thermal (to be covered)

[see M. Reiser; Davidson, Noneutral Plasmas, 1990]

fi xexp(—H,/T)

T = const > 0 ‘
Infinity of choices can be made for an infinity of papers! r =

* Fortunately, range of behavior can be understood with a few reasonable choices
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:
[see Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

Waterbag distribution:
fJ_(HJ_) :fO@(Hb—HJ_) fo = const
Hjp = const Edge
1, >0 Hamiltonian

@(l’):{ 0, <0

The physical edge radius "e of the beam will be related to the edge Hamiltonian:

HJ_’T:TC - Hb

Employing the general formulation, the Poisson equation for this
choice can be analytically solved simplifying analysis.

Details of Waterbag analysis to be included in later editions of notes.
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1) Density profile at fixed line charge and focusing strength

Q=10"" k%o = const
=
e 1.0 O'/O'[) = 0.1
=08
mb -%-S
S 06
04}
2
=z 0.2
a a/oy = 0.9

0.0 ‘
0 0.005 0.01 0015 0.02 0.025 0.03
Radius, kg,r
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2) Phase-space boundary at fi

Q=10"* k3o = const

5| nir)

@
2megy, 3 ¢

Density, [

Angle, |7 |

xed line charge and focusing strength

ofoy=0.1

Density
Profile

Radius, kg,r

0 0.005 0.01 0015 002 0.025

0.03

0.030
0.025 ooy = 0.9
0.020
0.015
0.010 0.7

0.005

0.000 B

Edge of
distribution
in phase-space

0 0005 001 0015 002 0025 0.03

Radius, kgor

SM Lund, USPAS 2006

Scaled parameters for examples

o/og

2 .2
kﬂorb

Sh Q k()re s

Transverse Equilibrium Distributions

Q=104

k 3
ﬁ 107 x kgoss,

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.2502 5.263 1.112 1.217
0.4666 2.778 1.709 1.208
0.6477 1.961 2.304 1.197
0.7916 1.563 2.979 1.183
0.8968 1.333 3.821 1.166
0.9626 1.190 4.978 1.144
0.9928 1.099 6.789 1.118
0.9997 1.042 10.25 1.085
1.0000 1.010 20.38 1.046

SM Lund, USPAS 2006

39.81
84.87
137.5
201.5
283.8
398.7
579.3
925.6
1938.

0.4737

0.2222

0.1373
0.09375
0.06667
0.04762
0.03297
0.02083
0.01010
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:

[see Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990) and

Reiser, Theory and Design of Charged Particle Beams, Wiley (1994)]

In an infinitely long continuous focusing channel, collisions will eventually relax
the beam to thermal equilibrium. The Fokker-Planck equation predicts that the
unique Maxwell-Boltzmann distribution describing this limit is:

Hres
lim f| ocexp(— t)

S§—00 T

Hoos = single particle Hamiltonian of beam

in rest frame (energy units)

T = const Thermodynamic temperature

(energy units)
Beam propagation time in transport channel is generally short relative to collision time,
inhibiting full relaxation

* Collective effects may enhance relaxation rate

- Wave spectrums likely large for real beams and enhanced by
transient and nonequilibrium effects

- Random errors acting on system may enhance and lock-in phase mixing
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann
distribution (careful on frame for temperature definition!) is:

m’yz)ﬁbc n m’ybﬁ[?CQHL
H)=——"—exp| ——————
fL(HL) 2T P ( T
Temperature
1 —
H, = §XJ_ + kBO 44 22202 T’ = const (energy units, lab frame)
1 % P n(r =0) = n = const on-axis density
= §x’f + ¢(r =0) =0 (reference choice)

The density can then be conveniently calculated in terms of a scaled stream

function:

n(r) = /de fL
Jr) = Ty

— fe ¥

Yo

(m%ﬁbc ko 2+@>
2

and the x- and y-temperatures are equal and spatially uniform with:

2 2]d2xL x? f1

T:z: — ’meﬁ

a2z, fi

=T = const

SM Lund, USPAS 2006
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be
solved. In terms of the scaled streamfunction:

10 (9 j
- ¢ —14+A—e¥
pop \"op
_ 8%
V(p=0)=0 0 —(p=0)
Here,
1/2 Debye length formed r . .
from the peak, on-axis p = Scaled radial coordinate
ﬁ b densit ’ YAD  in rel. Debye lengths
eam density
R L
(D _ q Plasma frequency formed > Ap = ( — )
om from on-axis beam density Wy
27b ﬁg 2 k Dimensionless parameter relating
A= — 1 the ratio of applied to space-charge

defocusing forces

* Equation is highly nonlinear and must, in general, be solved numerically
* Scaled solutions depend only on the single dimensionless parameter A
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Numerical solution of scaled thermal equilibrium Poisson equation in
terms of a normalized density

= 1.0
T

Tr 0.8

£ 06

=

S 04

I

= 02

-

(]

A 0.0 - - - -

0 5 10 15 20 25

Radius, p = r/(1Ap)
* Equation is highly nonlinear and must, in general, be solved numerically
- Dependance on A is very sensitive
- For small A, the beam is nearly uniform in the core
* Edge fall-off is always in a few Debye lengths when A is small

- Edge becomes very sharp at fixed beam line-charge
SM Lund, USPAS 2006 Transverse Equilibrium Distributions 62



Parameters constraints for the thermal equilibrium beam

Parameters employed in  f1 (H 1) to specify the equilibrium are (+ kinematic
factors): .

n, T, A
Parameters preferred for accelerator applications:
kﬂOv Qa Ex =&y =¢&p

Needed constraints can be calculated directly from the equilibrium:

T 00 3 Integral function

, T T
=4 () [ (5 + )

- _< T ) 1+ A
%0 \wmBEe? ) 2(wAp)?

Also useful,

1 T
Tg = 4<x2>J_ = k?_%o l4 <—’)/me§€2> + Q]

SM Lund, USPAS 2006
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These constraints must, in general, be solved numerically

* Useful to probe system sensitivities in relevant parameters

Examples:
1) rms equivalent beam tune depression as a function of A

0o = 1/2
9 _ Q _ )1 [y dp pe™¥]? ) R.H.S function
(1+A) [y dppPe? of A only

0.0 0.2 0.4 0.6 0.8 1.0
Tune Depression, o/0y

* Small tune depression corresponds to extremely small values of A

- Special numerical methods must be employed to calculate
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2) Density profile at fixed line charge and focusing strength

Q=10""* kéo = const
=
= 10 o/op=0.1
< 0.8
s
Sle 06
5
0.4
2
z 0.2
=
a
0.0

0 0.005 001 0.015 002 0.025 0.03
Radius, Fkgyr

* Density profile changes with scaled T
- Low values yields a flat-top => ¢ / g — 0
- High values yield a Gaussian like profile => ¢ /0y — 1
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3) Distribution contours at fixed line charge and focusing strength

Q= 1074 30 = const
fi(H.)/f (0) Contours, o/oy = 0.5
=
= 1.0 O’/O’U =0.1 a) 0.006 i C)
L 08 / 0.005
ME o W 0.004 .
& o 0.003 0.5
S0 El
Ea 7 2 o002 -
§ 1 ofoa=109 0.001 0.9 ”\
0.0 0.000
0 0005 001 0015 002 0025 003 00 02 04 06 08 10 12 14
Radius, kgor %102 Radius, ksor A
Radial
fL(HL)/fL(0) Contours, o/ag = 0.9 fL(HL)/fL(0) Contours, o/og = 0.1 scales
0.025 0.0012 change
b) 0.1 d) &
0.020 \ 0.0010 .
— Y 0.1 ~1 0.0008 o.
= 0015 T 0.4
E —— o 0.0006 2.5
en 0.010 0.5 ] .
g N E 0.0004 0.7
< — 0.7 0.6 - 0.8
0.005 -8 0.3 0.9
0.5 \ \ 0.0002 \ '
0.000 \ 0.0000
0 0005 001 0015 002 0025 003 0.0 0.2 04 0.6 0.8 1.0

. . Radius, kgor . %1072 Radius, kaor o
* Particles will move approximately force-free till approaching the edge where it is
rapidly bent back (see Debye screening analysis this lecture)
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Scaled parameters for examples 2) and 3)

Q=101
O'/O'Q A Sp kﬁo’yb)\p m 103 X kﬁogb
b-p
0.9 |1.851 0.3508| 12.33 1.065x10~1 0.4737

0.8 16.382x10~1 0.6104| 6.034 4.444x107° (0.2222
0.7 [2.649%10~Y 0.7906| 3.898 2.402x107° 0.1373
0.6 [1.059%10~1 0.9043| 2.788 1.406x1075 0.09375
0.5 [3.501x10™2 0.9662| 2.077 8.333x107° 0.06667
0.4 |7.684x1072 0.9924| 1.549 4.762x107° 0.04762
0.3 [6.950x10~* 0.9993| 1.112 2.473x107° 0.03297
0.2 6.389x10~6 1.0000| 0.7217 1.042x10~6 0.02083

0.1 {4.975x10712 1.0000| 0.3553 2.525x10~7 0.01010
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Comments on continuous focusing thermal equilibria

From these results it is not surprising that the KV model works well for real beams
with strong space-charge (i.e, rms equivalent eral) since the edges of a
smooth thermal distribution become sharp

* Thermal equilibrium likely overestimates the edge with since T = const, whereas a
real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations
from the KV model

* Nonlinear terms can radically change the stability properties (stabilize fictitious
higher order KV modes)

* Smooth distributions contain a spectrum of particle oscillation frequencies that are
amplitude dependent
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]
We will show that space-charge and the applied focusing forces of the lattice
conspire together to Debye screen interactions in the core of a beam with high
space-charge intensity
* Will systematically derive the Debye length employed in the intro lectures of J.J.
Barnard

* The applied focusing forces are analogous to a stationary neutralizing species in
a plasma
/I Review:

Free-space field of a “bare” test line-charge At at the origin 7 =0

o(r) = A 2 12( %) _ M)

27r r or or 2meg T
solution (use Gauss' theorem) shows long-range interaction
= (r) + const
2meq
8(]5 At
E,. =

Or  2meqr //
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

10 B A 0(r)
ror ( _> ___/dQI Jo(HL) = omeq T

Thermal Equilibrium Test Line-Charge

Set:
b = do + 60 ®o = Thermal Equilibrium potential with no test line-charge
= Qo
0¢ = Perturbed potential from test line-charge

Assume thermal equilibrium adapts adiabatically to the test line-charge:

n(r) = /dQ:c’L fL(HL) =ne ¥ ~ fe=o(r) g=ad0/ (1 T)

)
%‘«1
~ =) (1 . q‘5_¢) K
T
Yields:
Lo (066N _ & . gy M O(0)
ror 87“ N eoygT 2meg T

Assume a relatively cold beam so the density is flat near the test line-charge:

e ¥ ~
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This gives:

00¢ op At 0(r)
r 87“ ( ) C2meq T

or V2N, 2mep T

1/2 .
<€0T) __ Debye radius formed from peak,

q3n on-axis beam density

Derive a general solution by connecting solution very near the test charge with the
general solution for r nonzero:

Near solution: (r — 0)

0¢ .. 19 85qb At 6(r)
YENS, Negligible > 75\ "5, ) =  27meq T

The free-space solution can be immediately applied:

At
0p ~ — In(r) 4 const
2meg
r—0
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General Exterior Solution: (7 # 0)

The delta-function term vanishes giving:

10 [ 98¢ _r
o (”a—p> —op=0 # = Sp

This is a modified Bessel equation of order O with general solution:
Iy (517) = Modified Bessel Func, 1* kind

Ko(z) = Modified Bessel Func, 2™ kind
C1, Cy = constants

d¢ = C1lo(p) + C2Ko(p)

Connection and General Solution:

Use limiting forms:
p <1 p>1

Io(p) — 14 6(p?) Io(p) — —p[l +6(1/p)]
Ko(p) — —[In(p/2) +0.5772 - -+ O(p?)]
— \/7 + @ l/p
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Comparison shows that we must choose for connection to the near solution and

regularity at infinity:

2meg

General solution shows Debye screening of test charge in the core of the beam:

5 — At K, r Ko(z) Order Zero
2me YoAD Modified Bessel Function

At 1 e~/ RAD) s A

2\/% €0 r / ('7b A D)
* Screened interaction does not require overall charge neutrality!

- Beam particles redistribute to screen bare interaction

- Beam behaves as a plasma and expect similar collective waves etc.
* Same result for all smooth equilibrium distributions and in 1D, 2D, and 3D

- Reason why lower dimension models can get the “right” answer for

collective interactions in spite of the Coulomb force varying with dimension

* Explains why the radial density profile in the core of space-charge dominated beams

12

are expected to be flat
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S9: Continuous Focusing: The Density Inversion Theorem
Shows x and x' dependancies are strongly connected in an equilibrium

For: — 1 qu

fi=fu(HL) 1

= —xT +9(r) 1 )
) 9 _ 1,2 2 q

calculate the beam density N Y= 5 kgor~ + m 75;” ﬁg 2

n(r) = [l f(HL) =2x [ dU fLU +00)

0

differentiate:

on 0 & 0

7% 27r/0 dU %fL(U%—@U) = 27r/0 au %ft(Uﬂb)

¢« 0

—2r lim f1(U+4) - 27/L(¢)
bounded distribution

1 On

fi(Hy) =~ 2 90

1 qé(r)
r) = —k3,r% + — it
,(p:HJ_ ¢( ) 2 ,80 mﬁg’ﬁg&

Assume that n(r) is specified, then the Poisson equation can be integrated:

Q¢( ) Lo, 5 / dr / x oz
r = —kgor® — dr 7 n(r
¥(r) - mfybﬁbc2 980 m’ybﬁbc%o
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For = const rdiE T .. .
n(r) / d—f / dr 7 n(7) o r?
o 7 Jo

This suggests that Y(r) is monotonic in » when d n(r)/dr is monotonic. Apply the

chain rule: Density Inversion Theorem
1 on 1 on(r)/or
H)=-—— ~ 91 9u(r)/or
fJ_( J-) o a¢ W=H 2 8@&(7‘)/67’ Y=H,
1, q¢
¢(T) - 2k307n + mfyg’ﬂgcz

For specified monotonic n(r) the density inversion theorem can be applied with
the Poisson equation to calculate the corresponding equilibrium f, (H )

Comments on density inversion theorem:
* Shows that the x and x' dependance of the distribution are inextricably linked for an

equilibrium distribution function fi(Hy)
- Not so surprising -- equilibria are highly constrained
*1If df; (H1)/dH, <0 then the kinetic stability theorem (see Kinetic Stability

lectures) shows that the equilibrium is also stable
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// Example: Application of the inversion theorem to the KV equilibrium

. n, 0<r<nr @ s .
= { 0, mp<r > or Ao(r =)
on _ onjor
oY oY/or property of delta-function:
_ _nolr—m) 0(x — i)
= ougor S =2 1 e
_ he(r—mp) ‘
T OY/Or]p—r, f(zi) =0
= —n0(Y(r) — ¥(rs)) i root of f(x)
use: V() = Hilx =0 =Huip
1 on n Expected
> (fL(HL) =~ =5 = —0(HyL — Hip)
2m O w=H, 27 KV form /)

Similar application of derivatives with respect to Courant-Snyder invariants
can “derive” the needed form for the KV distribution of an elliptical beam

without guessing.
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S10: Comments on the plausibility of smooth, Vlasov equilibria in
periodic transport channels

The KV and continuous models are the only (or related to simple transforms
thereof) known exact beam equilibria. Both suffer from idealizations that render
them inappropriate for use as initial distribution functions for modeling of real
accelerator systems:

* KV distribution has an unphysical structure giving rise to well known instabilities
with unphysical manifestations

* Continuous focusing is inadequate to model real accelerator lattices with periodic
or s-varying focusing forces

There is much room for improvement in this area, including study if smooth
equilibria exist in periodic focusing and implications if no exact equilibria exist.
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Large envelope flutter associated with strong focusing can result in a rapid high-
order oscillating force imbalance acting on edge particles of the beam

Temperature Flutter Example Systems r /Ir )2
Elliptical rms Equivalent Beam max__min
. A AG Trans: 0,=60" | ~2.5
Y Vg >
r AG Trans: 0, =100°| ~4.9
53 X Txri ~const = T, i2 Matching Section ~ 15 Possible
r.’])

Characteristic Plasma Frequency of Collective Effects

Continuous Focusing Estimate

Oplasma ™~ i—:\/zQ Typical: oplasma ~ 105°/period

* Temperature asymmetry in beam will rapidly fluctuate with lattice periodicity

- Converging plane => Warmer
- Diverging plane => Colder
* Collective plasma wave response slower than lattice frequency

- Beam edge will not be able to adapt rapidly enough

- Collective waves will be launched from lack of local force balance near the edge
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The continuous focusing equilibrium distribution suggests that varying Debye
screening together with envelope flutter would require a rapidly adapting beam
edge in a smooth, periodic equilibrium beam distribution

FL = myy 35 c*i exp [ — myy By H 1
27T T
Continuous Focusing Thermal Equilibrium Beam

—Self Copsistent Beam Edoe

1. 6lca=10.1 4
~ ” Q=10
= ¥
i gl et
= 0 8 Gy A T Py ) ]
o g_ ol | 4sx107?| z2s3mi0”
- o 02 | 36x 1079 1o4= 1078
3 ~w 6 0F [6esxlo™ | z47z10° i
™ FTE‘ - o4 | 768% 1077 1761078
M [ 05 | 350x 1077 B33z 1078 i
— D4 08 [losxwot | ld41=z10” 4
ot 07 | z85% 107! 2407 1070
= 0B | 538x 107t 4z loT il
g D21 ; 0. 05 | LES o710~ i
1 I ciGp=U.
O I ]
0 1 L L 1 1 1 1 L L 1 L 1
0 0.005 0.01 0.015 0.02 0.025 0.03
Radius, kgqr
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It is clear from these considerations that if smooth “equilibrium” beam
distributions exist for periodic focusing, then they are highly nontrivial

Would a nonexistence of an equilibrium distribution be a problem:
*+ Real beams are born off a source that can be simulated

- Propagation length can be relatively small in linacs
* Transverse confinement can exist without an equilibrium
- Particles can turn at large enough radii forming an edge
- Edge can oscillate from lattice period to lattice period
without pumping to large excursions
— Might not preclude long propagation with preserved
statistical beam quality

Even approximate equilibria would help sort out complicated processes:
* Reduce transients and fluctuations can help understand processes in simplest form
- Allows more “plasma physics” type analysis and advances
* Beams in Vlasov simulations are often observed to “settle down” to a fairly regular
state after an initial transient evolution

- Extreme phase mixing leads to an effective relaxation
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These slides will be corrected and expanded for reference and any future
editions of the US Particle Accelerator School class:
Beam Physics with Intense Space Charge, by J.J. Barnard and S.M. Lund

Corrections and suggestions are welcome. Contact:
SMLund@1Ibl.gov

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG 47R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

(510) 486 — 6936

Please do not remove author credits in any redistribuitons of class material.
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