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IRMA, Université Louis Pasteur

Strasbourg, France

Berkeley, September 15, 2003
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Outline

• Grid based methods for the Vlasov equation.

• Motivations for adaptiveness

• An adaptive method based on a wavelet decomposition.

• A moving phase space grid method.
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The Vlasov equation

• Simulation of plasmas and high intensity beams often require to

numerically the Vlasov equation coupled with a self-field solver

(Poisson, Maxwell...)

• Distribution function f(x, v, t) is solution of the Vlasov equation

∂f

∂t
+ v · ∇x f +

q

m
(E + v ×B) · ∇v f = 0,

generally coupled with the Poisson or Maxwell equations.

• Numerical simulations are mostly performed using PIC method.
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Why use direct Vlasov methods ?

• PIC remains the essential tool for beam and plasma simulations.

• Important noise in PIC methods especially in poorly populated

regions of phase space makes it hard to see phenomena like e.g.

– particle trapping (strong Landau damping) in plasmas

– halo formation in beams

• Computers now powerful enough to do realistic physics using a grid

in phase space.

• Provides alternative to PIC for code benchmarking.
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The backward semi-Lagrangian Method

• f conserved along

characteristics

• Find the origin of the

characteristics ending at the

grid points

• Interpolate old value at

origin of characteristics

from known grid values

→ High order interpolation

needed
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Example of simulation on uniform mesh

• Applied field ~B = (−1
2B

′(z)x, −1
2B

′(z)y, B(z)), with B(z) =
B0
2 (1 + cos(2πz

s )), with B0 = 2T and S = 1m.

• Semi-Gaussian beam of emittance ε = 10−3,

f0(r, vr, Pθ) =
n0

πa2
exp(−v

2
r + (Pθ/(mr))2

2v2
th

),

where Pθ = mrvθ + mB(z)r2

2 , n0 = I
qvz

, I = 0.05A and E =
80MeV so that vz = 626084ms−1.
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Adaptive semi-Lagrangian method

• We want to optimize the number of grid points for a given numerical

error.

• Multi-resolution techniques using interpolating wavelets are well

suited to determine where refinement is needed.

• Principle of the method

– Use different levels of meshes

– At one given level, decompose gridfunction into gridfunction at

coarser level + details.
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V
j

Grid Gj, grid points xj
k = k 2j, level j
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Vj+1V
j

Grid Gj+1, grid points xj+1
k = k 2j+1, level j + 1
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Vj+1 Vj+2V
j

Grid Gj+2, grid points xj+2
k = k 2j+2, level j + 2
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The wavelet decomposition

• Idea: Decompose more precise sample, i.e. values of f at grid

points of Gj+1 (denoted by ci+1) into smaller sample i.e. values of

f at grid points of Gj (denoted by ci) + details (denoted by di).

• Details contain difference between exact value and value predicted

using interpolation operator.

cj+1
2k = cjk same value at coarse mesh points

dj
k = cj+1

2k+1 − P2N+1(x
j+1
2k+1).
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Prediction operator

Predict values at unknown positions of finer level

using Lagrange interpolating polynomial on coarser level.
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Prediction operator

Predict values at unknown positions of finer level

using Lagrange interpolating polynomial on coarser level.

cubic
polynomial
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Prediction operator

Predict values at unknown positions of finer level

using Lagrange interpolating polynomial on coarser level.

cubic
polynomial

value
predicted

dj
k = cj+1

2k+1 − P2N+1(x
j+1
2k+1) and cj+1

2k = cjk
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Adaptivity and semi-Lagrangian method

• Semi-Lagrangian method based on polynomial interpolation.

• Main idea for adaptivity: details are small where interpolation does

a good job.

• In adaptive method, use wavelet decomposition to eliminate grid

points corresponding to small details.

• No loss of information due to wavelet decomposition.

• Grid points where |dj
k| < ε are removed

→ controled loss of information.
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Hierarchical expression of the information

• Express data given by values on a given set of points as data given

on a coarser sample + missing piece.

• Define prediction and restriction operators based on simple

operations.

• In terms of function spaces

Vj+1 = Vj ⊕Wj.
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Scaling function
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Wavelet interpolation

Interpolation formula

f∗(x, v) =
∑
k1,k2

(
cj0k1,k2

ϕj0
k1

(x)ϕj0
k2

(v)

+
j1−1∑

j0

(
drow,j

k1,k2
ψj+1

k1
(x)ϕj

k2
(v)

+ dcol,j
k1,k2

ϕj
k1

(x)ψj
k2

(v)

+ dmid,j
k1,k2

ψj+1
k1

(x)ψj+1
k2

(v)
))

(1)
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The Algorithm for the Vlasov Problem...

• Initialisation: decomposition and compression of f0.

• Prediction in x of the grid G̃ (for important details) at the next

split time step following the characteristics forward. Retain points

at level just finer.

• Construction of Ĝ: grid where we have to compute values of f∗

in order to compute its wavelet transform.
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...The Algorithm for the Vlasov Problem...

• Advection-interpolation in x: follow the characteristics

backwards in x and interpolate using wavelet decomposition (1):

f∗(x, v) = fn(x− v∆t, v)

• Wavelet transform of f∗: compute the ck and dk coefficients at

the points of G̃.

• Computation of electric field from Poisson.

• Same procedure for the velocity advance.
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Sharp edge beam evolution in applied field
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Semi-Gaussian beam evolution in uniform
focusing channel

• Potassium ions

• Beam energy 80 keV

• Uniform focusing

• Tune depression 0.25
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Semi-Gaussian beam evolution in periodic
focusing channel

• Potassium ions

• Beam energy 80 keV

• Periodic focusing field of the form α(1 + cos 2πz/S).

• Tune depression 0.17
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What about a moving computational
domain

• For beam simulations large gain can already be expected by moving

computation box.

• Computation box could be determined from envelope.

• Expect much easier implementation.

• Splitting algorithm would not work anymore.
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The splitting algorithm

• Enables to bring back the Vlasov equation to two constant

coefficients advection equations on each time step :

– First solve
∂f

∂t
+ v · ∇xf = 0

– Then solve
∂f

∂t
+ F (x, t) · ∇vf = 0

• High order accuracy can be achieved by alternating the solves in

the right way.
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Pros and cons of splitting algorithm

• Time splitting enables to bring back a Vlasov solver to a succession

of constant coefficient advections → no ODE solver needed for the

characteristics.

• HOWEVER:

– Axes are privileged directions in such an algorithm.

– Does not work anymore if grid directions are not parallel to x

and v directions as can happen in transform method.
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A non split time stepping algorithm

Knowing the final position (Xn+1, V n+1) at time step tn+1, as

well as fn, ρn−1, En we can compute the initial position (Xn, V n)
using the following algorithm:

1. Predict Ēn+1 using the continuity equation (or directly Ampere’s

law in 1D)

ρn+1 = ρn−1 − 2∆t∇ · Jn, Jn = q

∫
fn(x,v)v dv,

−∇2φn+1 =
ρn+1

ε0
, Ēn+1 = −∇φn+1.
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2. Vn+1
2 = Vn+1 − ∆t

2 Ēn+1(Xn+1);

3. Xn = Xn+1 −∆tVn+1
2;

4. Vn = Vn+1
2 − ∆t

2 En(Xn).

5. fn+1(Xn+1,Vn+1) = interpolation(fn)(Xn,Vn);

6. ρn+1 =
∫
fn+1 dv,

7. Correct Ēn+1 using −∇2φn+1 = ρn+1

ε0
, Ēn+1 = −∇φn+1.

8. If ‖Ēn+1 − Ēn+1
prev‖ > threshold go back to 2.
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Towards the moving grid algorithm

The semi-Lagrangian method consists in two conceptually different

steps:

1. Advection step: follow particle trajectories. completely
independent of the grid and most naturally performed in the
physical space

2. Interpolation step: Interpolation grid needed to reconstruct the

distribution function at every point in phase space at one given

time step, needs not be the same at two different time steps.

Ideal if grid points exactly on particle trajectories.
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Desired features of efficient solver

• Use optimal number of grid points to reconstruct distribution

function f at any given time with a given accurary.

• Minimize number of wasted grid points (computations in zones of

vanishing f).

• Have grid points follow particle trajectories → minimize

interpolation errors.

Eric Sonnendrücker, Berkeley, September 15 2003 33



The transform method

• Define at each time step an invertible mapping ϕt from a logical

grid to the physical grid.

• This mapping needs to be known or constructed automatically.

• Distribution function on logical grid f∗(x∗, v∗, t) = f(ϕt(x∗, v∗), t).
∗ denotes quantities on logical grid.

• f∗ satisfies the following conservation property

f∗(x∗, v∗, t) = f∗(X∗(s;x, v, t), V ∗(s;x, v, t), s)
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The algorithm

1. Compute positions in physical phase-space of grid points where

fn+1 is to be computed: (xn+1
i,j , vn+1

i,j ) = ϕn+1(x∗i , v
∗
j ), where

(x∗i , v
∗
j ) are the nodes of the logical grid.

2. Compute origin of grid points (xn+1
i,j , vn+1

i,j ) using algorithm 1 or

similar. We denote by (Xn
i,j, V

n
i,j) these origins.

3. Transform (Xn
i,j, V

n
i,j) back to the logical grid at time tn:

(X∗n
i,j , V

∗n
i,j ) = ϕ−1

n (Xn
i,j, V

n
i,j).

4. Interpolate f∗n at origin of characteristics on logical grid to get

fn+1, as f∗(n+1)(x∗i , v
∗
j ) = f∗n(X∗n

i,j , V
∗n
i,j ).
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Coupling with the Poisson equation

• Uniform grid: ρ obtained by summing grid values of f over v grid

values for each x.

• Moving grid: In general grid lines do not follow x or v. Hence

additional interpolation step might be necessary to compute ρ.

• e.g. integrate using Gauss quadrature and interpolate ρ at Gauss

points.

• Other option: try and keep transformation which does not change

x.
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Beam simulation in transverse phase space

Find transform following beam envelope.

e.g. RMS equivalent ellipse satisfies

tan 2θ =
2〈xx′〉

〈x2〉 − 〈x′2〉
,

a =
√

2(cos2 θ〈x2〉+ sin2 θ〈x′2〉+ 2 sin θ cos θ〈xx′〉),

b =
√

2(sin2 θ〈x2〉+ cos2 θ〈x′2〉 − 2 sin θ cos θ〈xx′〉).
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Numerical results

Toy problem: transverse axisymmetric Vlasov-Poisson equation

with vanishing canonical angular momentum. This problem reads

∂f

∂t
+ vr

∂f

∂r
+ (Fapp +

q

m
Er)

∂f

∂vr
= 0,

1
r

d

dr
(rEr) = ρ =

∫
f dvr.

Examples with important envelope motion.

1. Mismatched beam in a uniform focusing channel.

2. Matched beam in a periodic focusing channel.
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Evolution of mismatched Gaussian beam in uniform focusing channel
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Evolution of matched Gaussian beam in peirodic focusing channel
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Conclusions

• Adaptive method looks promising in 2D phase space.

• Wavelet method does a very good job in finding useful grid points.

• However

– Large overhead, due to adaptivity. Method efficient if there are

a lot fewer points in adaptive grid.

– Implementation more complex due to adaptive mesh structure.

• Moving grid semi-Lagrangian method feasible and easy to

implement.
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• Interesting for beam simulations where computing box can be easily

determined from envelope motion.

• Needs to be implemented for realistic 2D simulations.

• Other kinds of transforms enabling to follow more closely the

particle trajectories should be tried.
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