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Overview of NDCX-II Physics Design 

Beam traversing an acceleration gap 
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The drift compression process is used to shorten an ion bunch 

•  Induction cells impart a head-to-tail velocity gradient (“tilt”) to the beam 
•  The beam shortens as it “drifts” down the beam line 

•  In non-neutral drift compression, the space charge force opposes (“stagnates”) the 
inward flow, leading to a nearly mono-energetic compressed pulse: 

•  In neutralized drift compression, the space charge force is eliminated, 
resulting in a shorter pulse but a larger velocity spread: 
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Drift compression is used twice in NDCX-II 

   Initial non-neutral pre-bunching for: 
•  better use of induction-core Volt-seconds 
•  early use of 70-ns 250-kV Blumlein power supplies from ATA 

inject apply 
tilt drift accelerate apply 

tilt 
neutral-
ized drift target 

 Final neutralized drift compression onto the target 
•  Electrons in plasma move so as to cancel  

the beam’s electric field 
•  Require nplasma > nbeam for this to work well 
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The baseline hardware configuration is as presented during the 
April 2010 DOE Project Review 

•  27 lattice periods after the injector 
•  12 active induction cells 
•  Beam charge ~50 nano-Coulombs 
•  FWHM < 1 ns 
•  Kinetic energy ~ 1.2 MeV 
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12-cell NDCX-II baseline layout 
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12-cell NDCX-II baseline layout 
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12-cell NDCX-II baseline layout 
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12-cell NDCX-II baseline layout 
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Simulations enabled development of the NDCX-II physics design 

•  ASP is a purpose-built, fast 1-D (z) particle-in-cell 
code to develop acceleration schedules 
–  1-D Poisson solver, with radial-geometry correction 
–  realistic variation of acceleration-gap fields with z 
–  several optimization options  

•  Warp is our full-physics beam simulation code 
–  1, 2, and 3-D ES and EM field solvers 
–  first-principles & approximate models of lattice elements 
–  space-charge-limited and current-limited injection 
–  cut-cell boundaries for internal conductors in ES solver 
–  Adaptive Mesh Refinement (AMR) 
–  large Δt algorithms (implicit electrostatic, large ωcΔt) 
–  emission, ionization, secondaries, Coulomb collisions... 
–  parallel processing 

A. Friedman, et al., Phys. Plasmas 17, 056704 (2010).  
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Steps in development of the NDCX-II physics design … 
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Steps in development of the NDCX-II physics design … 
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Steps in development of the NDCX-II physics design … 
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-  time for entire beam to cross 
a plane at fixed z 

*  time for a single particle at 
mean energy to cross finite-
length gap 

+ time for entire beam to cross 
finite-length gap 

center of mass z position (m) 

 Pulse duration vs. z: the finite length of the gap field folds in 

40g.002-12 



Slide 15 The Heavy Ion Fusion Science 
Virtual National Laboratory 

Steps in development of the NDCX-II physics design … 
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Snapshots from a Warp (r,z) simulation 

Beam 
appears 
long 
because  
we plot 
many 
particles 
… 

… but 
current 
profile 
shows 
that it is 
short 

           compressing                             approaching maximum compression 

                exiting                                                                    at focus 

40g-12 
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3-D Warp simulation with perfectly aligned solenoids 
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Steps in development of the NDCX-II physics design … 
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Steps in development of the NDCX-II physics design … 
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Warp runs illustrate effects of solenoid alignment errors 
plots show beam deposition for three ensembles of solenoid offsets 

maximum offset for each case is 0.5 mm 
red circles include half of deposited energy 
smaller circles indicate hot spots 
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A “zero-dimensional” Python code (essentially, a spreadsheet) 
captures the essence of the NDCX-II acceleration schedule 

•  Computes energy jumps of nominal head and tail particles at gaps 
•  Space-charge-induced energy increments between gaps via a “g-factor” model 

               0-D          ASP 
 head      923         1100 
   tail     1082         1300 

•  The final head and tail energies (keV) are off; 
the g-factor model does not accurately push 
the head and tail outward:  

•  But – not bad, for a main loop of 16 lines. 

ASP 0-D 
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Things we need to measure, and the diagnostics we’ll use 

Non-intercepting (in multiple locations): 
•  Accelerating voltages: voltage dividers on cells 
•  Beam transverse position: four-quadrant electrostatic capacitive probes 
•  Beam line charge density: capacitive probes  
•  Beam mean kinetic energy: time-of-flight to capacitive probes 

Intercepting (in two special “inter-cell” sections): 
•  Beam current: Faraday cup 
•  Beam emittance: two-slit or slit-scintillator scanner 
•  Beam profile: scintillator-based optical imaging  
•  Beam kinetic energy profile: time-of-flight to Faraday cup 
•  Beam energy distribution: electrostatic energy analyzer 

  (Underlined items will be available at commissioning) 
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“Physics risks” concern beam intensity on target, not project 
completion or risk to the machine due to beam impact 

•  Alignment errors exceeding nominal 0.5 mm 
– Machine usable with larger errors with intensity degradation 
–  Beam “steering,” using dipoles in diagnostic cells, can mitigate 

“corkscrew” deformation of beam 
– Off-center beam, if reproducible, is not a significant issue 

•  Jitter of spark-gap firing times exceeding nominal 2 ns 
–  Slow degradation of performance with jitter expected, per simulations 
–  Similar slow degradation as waveform fidelity decreases 

•  Source emission non-uniform, or with density less than nominal 1 mA/cm2 
–  Simulations show a usable beam at 0.5 mA/cm2 

– Will run in this mode initially, to maximize source lifetime  
–  Space-charge-limited emission mode offers best uniformity 

•  Imperfect neutralization because final-focus solenoid not filled with plasma 
–  Build and use a larger-radius solenoid at modest cost to program 

–    
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NDCX-II, when mature, should be far more capable than NDCX-I 

NDCX-I (typical 
bunched beam) 

NDCX-II 12-cell 
(ideal*) 

Ion species K+ (A=39) Li+ (A=7) 

Total charge 15 nC 50 nC 

Ion kinetic energy 0.3 MeV 1.25 MeV 

Focal radius (containing 50% of beam) 2 mm 0.6 mm 

Bunch duration  (FWHM) 2 ns 0.6 ns 

Peak current 3 A 38 A 

Peak fluence (time integrated) 0.03 J/cm2  8.6 J/cm2 

Fluence within a 0.1 mm diameter spot 0.03 J/cm2        
(50 ns window) 

5.3 J/cm2       
(0.57 ns window) 

Fluence within 50% focal radius and 
FWHM duration (Ekinetic x I x t / area) 

0.014 J/cm2 1.0 J/cm2 

* NDCX-II estimates of ideal performance are from (r,z) Warp runs (no misalignments), and assume uniform  
1 mA/cm2 ion emission, no timing or voltage jitter in acceleration pulses, no jitter in solenoid excitation, and 
perfect beam neutralization; they also assume no fine energy correction (e.g., tuning the final tilt waveforms) 
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Heavy Ion Fusion Science Virtual National Laboratory 

NDCX-II will be a unique user facility for HIF-relevant physics. 
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Comments on 
final beam-lines 

for a driver 
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Schematic of final beamlines for ion indirect drive 
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Schematic of final beamlines for ion direct drive 

from 
accelerator 
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With a single linac, arcs transport the beams to the two sides of 
the target (for most target concepts)  

•  In the final section of the driver, the beams are 
separated so that they may converge onto the 
target in an appropriate pattern. 

•  They also undergo non-neutral drift-compression, 
and ultimately “stagnate” to nearly-uniform energy, 
and pass through the final focusing optic. 

•  In the scenario examined by Dave Judd (1998), 
the arcs are ~ 600 m long, while the drift distance 
should be < 240 m. 

•  Thus, the velocity “tilt” must be imposed in the 
arcs, or upon exit from the arcs. 

•  To maintain a quiescent beam, “ear fields” are 
needed in the arcs. 

•  For pulse-shaping, the arcs may represent an 
opportunity to pre-configure the beams before final 
compression. 

or 

indirect 
drive 

direct 
drive 
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If a foot pulse of lower K.E. is needed, those beams are “traditionally” 
extracted from the linac early and routed via shorter arcs 

David L. Judd, “A Conceptual Design of 
Transport Lines for a Heavy-Ion Inertial-
Fusion Power Plant” (1998) 
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Delay between foot and main pulses can be inserted in a nearly 
linear system 

This concept may be useful … 
•  if two linacs are used, one from each side  
•  with a single linac, for a single-sided target 
•  with a single linac, for a two-sided target (see next slide) 

accel to intermediate      boost            foot beams drift                                    foot 
kinetic energy                 speed           at higher speed                                    beams 
                                       of foot                                                                        arrive 
                                       beams                                                                       first 

main pulse beams                  boost main beams        target 
drift at lower speed (delay)     to final energy 

main 
foot 

z = 0            z1                                       z2                    z3                 z4 
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z2 
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A single linac with common arcs could drive a 2-sided target  
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Example: for an indirect-drive target requiring two beam energies 

Aion = 208.980 amu                   
Accelgradient =  3.0 MV/m             
Int. Vz = 48.046 m/us, beta = 0.1603 
Foot Vz = 52.632 m/us, beta = 0.1756 
Main Vz = 60.774 m/us, beta = 0.2027 
Int. Ek =  2.5 GeV                
Foot Ek =  3.0 GeV                
Main Ek =  4.0 GeV                

t1foot  = 3310.884 ns                 
t1main  = 3468.888 ns                 
t2foot  = 10435.840 ns                 
t2main  = 11273.886 ns                 
t3foot  = 19935.780 ns                 
t3main  = 20463.353 ns                 
t4foot  = 23735.757 ns                 
t4main  = 23754.229 ns                 
delay   = 18.473 ns  

accel to intermediate      boost            foot beams drift                                    foot 
kinetic energy                 speed           at higher speed                                    beams 
                                       of foot                                                                        arrive 
                                       beams                                                                       first 

main pulse beams                  boost main beams        target 
drift at lower speed (delay)     to final energy 

main 
foot 

z = 0            z1                                       z2                    z3                 z4 

z1 =  0.167 km                      
z2 =  0.542 km                      
z3 =  1.042 km                      
z4 =  1.242 km                      
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Example: for an X-target requiring a single beam energy 

Aion = 84.910 amu                   
Accelgradient =  3.0 MV/m             
Int. Vz = 165.140 m/us, beta = 0.5509 
Foot Vz = 171.883 m/us, beta = 0.5733 
Main Vz = 171.883 m/us, beta = 0.5733 
Int. Ek = 12.0 GeV                
Foot Ek = 13.0 GeV                
Main Ek = 13.0 GeV                 

t1foot  = 1978.104 ns                 
t1main  = 2018.490 ns                 
t2foot  = 2559.895 ns                 
t2main  = 2624.038 ns                 
t3foot  = 4499.198 ns                 
t3main  = 4602.142 ns                 
t4foot  = 6244.571 ns                 
t4main  = 6347.515 ns                 
delay   = 102.944 ns  

accel to intermediate      boost            foot beams drift                                    foot 
kinetic energy                 speed           at higher speed                                    beams 
                                       of foot                                                                        arrive 
                                       beams                                                                       first 

main pulse beams                  boost main beams        target 
drift at lower speed (delay)     to final energy 

main 
foot 

z = 0            z1                                       z2                    z3                 z4 

z1 =  0.333 km                      
z2 =  0.433 km                      
z3 =  0.767 km                      
z4 =  1.067 km                      
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The drift compression process is used to shorten an ion bunch 

•  Induction cells impart a head-to-tail velocity gradient (“tilt”) to the beam 
•  The beam shortens as it “drifts” down the beam line 

•  In non-neutral drift compression, the space charge force opposes (“stagnates”) the 
inward flow, leading to a nearly mono-energetic compressed pulse: 

•  In neutralized drift compression, the space charge force is eliminated, 
resulting in a shorter pulse but a larger velocity spread: 
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Experiments on NDCX-II can explore non-neutral compression, 
bending, and focusing of beams in driver-like geometry 

NDCX-II w/ optional                 new non-neutral drift     new final   target 
   programmable        match      line w/ quadrupoles       focus 
    induction cell                       (and dipoles for bend) 

from 
accelerator 

final 
focus 

target 

non-neutral drift compression line 
(magnetic quads & dipoles) In a driver … 

On NDCX-II, two configurations to test …  
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HIF-motivated beam experiments on NDCX-II can study … 
•  How well can space charge  

“stagnate” the compression  
to produce a “mono-energetic” 
beam at the final focus? 

•  How well can we pulse-shape  
a beam during drift compression  
(vs. the Robust Point Design’s  
“building blocks”)?  

•  How well can we compress a beam while bending it?: 
–  “achromatic” design, so that particles with all energies exit bend similarly  
–  or, leave some chromatic effect in for radial zooming 
–  emittance growth due to dispersion in the bend 

•  Are there any issues with final focus using a set of quadrupole magnets? 

Most dimensionless parameters (perveance, “tune depression,” compression 
ratio, etc.) will be similar to, or more aggressive than, those in a driver. 

Initial vz profile Final  
line-charge 
profile 

J. W-K. Mark, et al., 
AIP Conf. Proc 152, 
227 (1986) 


