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Outline

1. Review of requirements (i.e. emittance, velocity spread
δp/prms, and energy fluence (J/cm2)) for Li based NDCX II for
Warm Dense Matter application

(Update: fpeak for parabolic pulse and consideration of a
K based NDCX II).

2. Discussion of requirements based on hydrodynamic
experiments
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Strategy: maximize uniformity and the efficient use of beam energy
by placing center of foil at Bragg peak

                                                                  
Ion beam 

In simplest example, target is a foil of solid or “foam” metal

Example: He

Enter foil
Exit foil

ΔdE/dX ∝ ΔT

log-log plot => fractional
energy loss can be high
and uniformity also high
if operate at Bragg peak
(Larry Grisham, PPPL) 
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(dEdX figure from L.C Northcliffe
and R.F.Schilling, Nuclear Data Tables,
A7, 233 (1970))
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Current NDCX II design is based on Lithium ion

SRIM code results
(provided by Igor
Kaganovich) gives dE/dX
for three ions of interest
(K, Na, and Li).

Li ions at ~ 1.8 MeV are 
at Bragg peak (although
K ions at 200 - 400 keV
are near inflection point)

Also range of Li ions
at ~ 1.8 MeV is ~ 3 µ
(a factor of 10 times
longer than 400 keV K 
ions) so hydro time
is factor of 10 longer 

dE/dX vs E

Δz  vs E
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Target temperature (assuming no hydro motion)

 natom cvT = ΔEion Nions/(π rspot
2 Δz)    (for uniform distribution on spot)

For solids at intermediate temps, cv= 3kb
Δz= ΔEion/(ρ dE/dX)      ΔEion=change in ion energy between
                                                  entrance to and exit from foil
So kT=9.6 eV (Nions/1013) (1 mm/rspot)2 (dE/dX/2 MeV cm2/mg) (Atarg/27)
In terms of micro-coulombs:
kT=9.6 eV (Nions/1013) (1 mm/rspot)2 (dE/dX/2 MeV cm2/mg) (Atarg/27)
    =6.0 eV (Q/1 µC) (1 mm/rspot)2 (dE/dX/2 MeV cm2/mg) (Atarg/27)
Expressed in terms of the fluence per unit area, F
kT= 0.19 eV (F/ 1 J/cm2)(1 MeV/Eentrance)(dE/dX/2 MeV cm2/mg) (Atarg/27)

This formula is for the energy at foil entrance and dE/dX at foil center. For 
Lithium at the Bragg Peak, Eioncenter=1.88 MeV, dE/dX=2.052 MeV cm2/mg.
The entrance to the foil is approximately 50% higher energy = 2.82 MeV.
Thus to reach 2 eV we need F=29.1 J/cm2 of Li at Eentrance = 2.82 MeV.
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The short pulse time and small spot radius place tight
constraints on longitudinal and transverse emittance

Transversely, spot radius determined
by emittance + chromatic aberrations

Higher momentum
trajectory

Lower momentum
trajectory Envelope

(average)

Minimum 
Spot radius

Tilt 
imposed

z

ΔVDrift
Compression

Length of beam prior to compression

Length of beam after compression

Δvtilt

Velocity
spread
before
compression

Longitudinally, phase space undergoes
rotation during drift compression;
<(δv/v)2>1/2 limits final bunch length
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C = ratio of initial to final bunch length;
η = conversion factor from tilt to rms
     = 0.22 (parabolic) - 0.29 (flattop) 

r0
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Increasing velocity tilt decreases pulse duration but increases
spot radius

If  
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then optimum initial
beam radius r0_opt
which minimizes rspot:
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Minimum spot radius at  r0_opt is then:
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At maximum compression 
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Example: for Δv/vtilt = .1, εΝ= 2 mm-mrad, β=0.047
f=0.4 m, η=0.29 ==>  rspotmin = 1.0 mm
For  Δt=20 ns and δp/prms=0.1% (both before compression) 
yields Δt = 0.7 ns (after compression).  
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Li spot radius as functions of normalized emittance
and velocity tilt
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B_solenoid = 15 T is assumed in the above calculations.
Focal length f = π/2kβ0 = π mv/qeB = 0.133 m (15 T/B) (β/.0295)(A/6.94)(1/q)      (Li)
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Simulations by Welch (and others subsequently) showed
substantial peaking relative to a gaussian with rspot=rspot_opt

Let n(r) = number of ions per unit area at focal spot, integrated over pulse
      N0  = total ions in pulse;   Δ = Δv/vtilt
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By adding contributions from each velocity class we may calculate the
intensity vs. r, by assuming overlapping Gaussians at target
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The central intensity [n(r=0)] increases as r0 increases
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values shown are for η=0.29, an initial constant current distribution
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If current is parabolic at time when velocity tilt is applied,
"peaking" factor is larger than constant current case
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Requirement on Lithium beam is a requirement on
charge in pulse, emittance, and velocity spread

Combining Temperature requirement with relation for spot radius yields:
Temperature requirement:
kT =6.0 eV (Q/1 µC) (1 mm/rspot)2 (dE/dX/2 MeV cm2/mg) (Atarg/27)
Using                                     (together with a peaking factor) yields:

kT = 2.26 eV (Q/ 1 µC) (1mm-mrad/εn)(1/Δv/v|tilt)(fpeak/1) x
                      x (.29/η)(B/15 T)(7/Aion)(Atarg/27)(dEdX/2 MeVcm2/mg)

(here fpeak = F/(QV/πrspot_opt
2)= peaking in J/cm2 due to peaking of overlapping 

                                             gaussians = 2.4 to 3.6 (typically 2.8)

Also, ηΔt|targΔv/v|tilt =Δt|bc<δp2/p2>bc
1/2 

kT=1.84 eV (Q/ 0.1 µC) (1mm-mrad/εn)(100ns/Δt|bc)(10-3/δp/prms_bc)(fpeak/2.8) x
                      x (B/15 T)(7/Aion)(Atarg/27)(dEdX/2 MeVcm2/mg)(Δttarg/1ns)

==>  (Q/ 0.1 µC) (1 mm-mrad/εn)(100ns/Δt|bc)(10-3/δp/prms_bc) >  1.12 for kT > 2 eV

€ 

r2spot _ opt = 2ηεf Δvtilt
v
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Requirement for potassium is analogous to lithium

dE/dX =    9 MeV cm2/mg  @ 3 MeV,
                 7 MeV cm2/mg  @ 2 MeV,                  and
                 5 MeV cm2/mg  @ 1 MeV

⇒Δz =  1 micron  (for 2/3 energy deposition) but ΔT/T ~ 4/7 ~ 57%
(for 5% variation need Δz ~ 0.1 micron).

For 1 Δz = 1 micron, hydro time is ~ 0.2 ns.

kT= 2.0 eV (F/ 9 J/cm2)(3 MeV/Eentrance)(dE/dX/7 MeV cm2/mg) (Atarg/27)

kT=1.15 eV (Q/ 0.1 µC) (1 mm-mrad/εn)(100ns/Δt|bc)(10-3/δp/prms_bc)(fpeak/2.8) x
                      x (B/15 T)(39/Aion)(Atarg/27)(dEdX/7 MeVcm2/mg)(Δttarg/1ns)



Implication for final spot radius
From Enrique's simulations:
      Before drift compression (z=4.97 m)

vz = 0.955 x 107     β=0.032
<δv/vrms>=2.4 x 10-4,           kT|| = 2 E <(δvz/vz)2>= 0.32 eV

                     εn = 0.4 mm-mrad
  Imax=0.7 A

               Q = 0.03 µC
                λmax= 0.073 µC/m
                lb = 0.57 m
               Δt = 33 ns (FWHM)
                     = 60 ns (FWFM approximate parabolic pulse) -> 1 ns      

For 15 T Solenoidal B-field and final pulse duration (FWZM= 1ns), fpeak = 2.5:
    rspot            Δv/v         kT     Sp. Fluence        Max εn      Max δp/p_rms     ldrift    Max rdrift
(mm) (2 rms)               (eV)        J/cm2              mm-mrad      (x 10-4)           (m)       (cm)
    0.23          0.066        5.8           84.3           0.40                2.4                 8          1.3
    0.39          0.066        2.0           29.0           1.20                2.4                 8          2.2
    0.39          0.224        2.0           29.0           0.40                7.2                2.7        0.6
    0.39          0.163        2.0           29.0           0.48                6.0                3.2        0.7

Large Δv allows relaxed δp/p_rms requirement and smaller drift length
but stricter requirement on εn.  The final ion density for the case of a 0.42 mm radius spot is
7.4 x 1013 ions/cm3.
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Application to systems model

Systems model assumes certain  input values (which are adjustable):
1. Child-langmuir emission
2. Diode gap voltage limited by breakdown voltage: 

V~{d1/2, d} for d{>, <} 1 cm 
3. Diode gap = Δ x diode radius; (Δ = 18) (to match Enrique's

current and current density)
4. Normalized emittance ~ diode radius x ( 0.5 eV)1/2

5. Longitudinal rms momentum spread = 5 x 10-4 (bc)
6. Solenoid field = 15 T
7. Voltage tilt core = 750 kV

         8. Peaking factor =2.5 (radius at which beam enters solenoid
                           r0 = r0opt); Higher peaking possible

9. Li and K beam, final energy = 2.82 MeV 
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Examples: Varying the diode radius (for Li, and K)
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Example continued (for Li, and K)
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Hydro simulations show that for a 1 ns pulse, target reaches
temperature of ~ 1.4 eV (rather than 2 without hydro)

Simulations by R. More using advanced EOS of uniformly heated foil

3.5 µ, solid density 35 µ, 10% density foam

HYDRA simulations with the same energy deposition give similar peak
temperature 
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II. Hydrodynamic experiment requirements

Currently there are two broad classes of "hydro experiments" proposed
for NDCX II

1. Stopping experiments
• Outflowing material cause ion beams to penetrate 

less deeply over course of pulse.
• Can coupling be optimized by proper 

choice of intensity and energy variations 
over space and time?

2. Stability experiments
• Volumetric stopping affects growth of Rayleigh-

Taylor instability differently than surface energy 
deposition.  Can we study this instability on NDCX II?
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Classical Rayleigh Taylor -- A review

(see A. R. Piriz, O. D. Cortázar, J. J. López Cela, and N. A. Tahir, 
"The Rayleigh Taylor Instability," American Journal of Physics, 74, 
1095-1098 (2006))
Heuristic derivation:

π/k

z

ξ = ξ0 cos kx

m d2ξ0/dt2 = Δp A     (Newton's equation)

m = (ρ2 + ρ1) V =(ρ2 + ρ1) A Δz

Δz = ~ 1/k     (not ξ0 !!!)

=>   d2ξ0/dt2 = ((ρ2 - ρ1)/ (ρ2+ ρ1)gk ξ0

If ξ0 ∼ eiωt  then   -ω2 =((ρ2 - ρ1)/ (ρ1 + ρ2))gk

In the case of ablation driven targets g is replaced by  a, the acceleration rate.  

Δp=(ρ2−ρ1)gξ If ρ2 >> ρ1 then Γ = -iω =~(gk)1/2
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Two different NDCX II beam parameters have been
simulated

Ion energy           23 MeV 2.8 MeV

Ion species            Ne (A=20.18) Li (A=6.97)

Total charge                           0.1 µC 0.03 µC

Pulse duration (full width)        1 ns 1 ns

Beam radius 0.5 mm 0.5 mm

Range in solid hydrogen 50 µ 30 µ
(according to Hydra)

Energy density in hydrogen 5.9x1010 J/m3 3.6x109 J/m3

Max kT (estimated) 2.3 eV 0.14 eV



We have begun using Hydra to explore accelerator requirements to
study beam driven Rayleigh Taylor instability

ρ
t= 0.4 ns

ρ
t= 1 ns

ρ
t= 5 ns

ρ
t= 10 ns

Beam

T
t= 0.4 ns

T
t= 1 ns

T
t= 10 ns

T
t= 5 ns

g/cm3

eV

23 MeV Ne, 0.1 µC, 1 ns pulse (NDCX II) impinges on  100 µ thick solid H, T=0.0012eV,
ρ =0.088 g/cm3; No density ripple on surface, blowoff accelerates slab
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When initial surface ripple is applied, evidence for Rayleigh Taylor
instability is suggestive
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ρ
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When initial surface ripple is applied, evidence for Rayleigh Taylor
instability is suggestive (-- continued)

vz
t=0.4 ns

vz
t=1 ns

vz
t=3.5 ns

vz
t=5 ns

vz
t=7.5 ns

vz
t=10 ns

Scales
from
previous
page
(ρ and T):

eV
Scale 
for above
figures
(vz):

g/cm3cm/µs



Density evolution  -- Li - based NDCX II
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Temperature -- Li - based NDCX II
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Velocity -- Li - based NDCX II
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Density and Temperature -- Ablator-side ripple -- Li NDCX II
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Velocity -- Ablator-side ripple -- Li NDCX II
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Conclusion

Current Li accelerator design will create interesting temperatures and
densities for WDM experiments.

If Li source fails, then K source experiments can also create an
interesting temperature regime for WDM experiments, although
uniformity will not be as originally envisioned.

RT experiments require rapid foil acceleration. Current Li design may not
have sufficient flux for H slab acceleration.

Experiments involving interaction of beam with blowoff could be carried
out on NDCX II (but needs definition).


