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ABSTRACT

We construct models of the open field zone in pulsars in which we assume space-charge limited,
time independent, electron flow from the surface of a conducting magnetized neutron star with
dipolar and quadrupolar components to the magnetic field. We find that the radius of curvature of
the field can be much less than in a pure dipole field and can be sufficient to account quantitatively
for the cutoff line in the P-P diagram if systematic departures from our basic assumptions about the

-outer magnetosphere occur (such as decreasing the maximum radius of the last closed feld line at

small P), We further investigate the effects on the cutoff line of three simple models of torque decay:
chmie decay of the dipolar magnetic Held, magnetic field complication due to'an MHD-secular
instability suggested by Flowers and Ruderman, and alignmeni of the magnetic dipole axis with the
rofation axis. We find qualitative dynamical differences from the pure dipole result (e.g., that
potential drops at low altitude in the nondipolar field might result in self consistent particle
acceleration even in the aligned rotator). We suggest possible observational consequences to the
existence of higher order components to the field {e.g., differences in the polarization angle versus
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pulse longitnde relation).

Subject headings: pulsars — stars:magnetic — stars: neotron

I. INTRODUCTION

Radic emission from pulsars implies the existence

of quite large energy density radio waves within the -

emission region (brightness temperatures of up to
10°° K have been inferred from the observations; cf.
Manchester and Taylor 1977). A collective emission
mechanism is required; otherwise particle energies cor-
responding to the unphysically high temperature of
~10% K would be implied. Therefore, a plasma (either
charpe neutral or charge separated) of density sufficient
to sustain collective behavior with oscillation frequen-
cies in the radio range must exist somewhere within the
vicinity of the pulsar. Goldreich (1969) and Sturrock
(1970) supgested magnetic conversion of the y-rays
emitted by ultrarelativistic charped particles near the
stellar surface as a likely source for a dense e™ plasma
in the magnetosphere, in spite of the large surface
gravity and low surface temperatures prevailing in neu-
tron stars. The creation of pairs requires large accelerat-
ing electric fields near the stellar surface which in turn
occur only if the magnetic ficld and rotation frequency
are quite larpe. Isolated, magnetized neutron stars with
long rotation periods and/or weak surface mapnetic
fields cannot create pairs. It is known (Lyne, Ritchings,
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and Smith 1975; Manchester and Taylor 1977) that
pulsar emission ceases for long rotation periods P; and
small spin-down rates P, a cutoff which may be due to
the failure to create pairs (Sturrock 1970). The compari-
son of the theoretical criteria for pair creation to the
observed form of the pulsar cutoff line in the P-P
diagram affords an interesting test for pulsar models
which have pair creation as a central element.

Sturrock’s (1970) original estimate was roughly in
accord with observations. However, his neglect of
the effective corotation charge density led to an overesti-
mation of the accelerating electric field. Arons and
Scharlemann (1979, hereafter AS) and Arons (19815) in
a more complete model for relativistic flow above the
polar caps found that in a pure dipole field with elec-
trons freely available from the star, the cutoff period
was (.15 s for typical parameters. This is more than an
order of magnitude less than the observed periods of the
longest peried pulsars. If particle emission from the
surface is inhibited, pair creation in the resulting vacuum
electric field may lead to pair creation in a pure dipole
field at somewhat longer pericds but still not at periods
as long as those observed {Ruderman and Sutherland
1975, hereafter RS). RS do obtain a cotoff period ~1 s
only after including magnetic fields with short radius of
curvature near the surface, but without calculating the
effect of changing the magnetic geometry on the accel-
erating electric field.



T4

While the assumption of a pure dipole field is ade-
quate for a qualitative understanding of pulsar spin-
down (Goldreich, Pacini, and Rees 1972}, the magnetic
field at the surface could be much more complex. If the
surface field contains contributions from mniltipoles of
order I, the Poynting flux of angular momentum from
the star is unaffected if

Bf(r=R*)¢( c )'—'

b= 0=x)

5)(103(%)(M)

for /=2. Here B (r= R,)=2p/R} is the polar field of
the dipole, g is the dipole moment (~10% cgs), B, is the
magnetic field of a centered / pole at its magnetic pole,
R,.=stellar radius~10 km, £,=27/P is the angular
frequency, and P =rotation period. If 8,1 for one or
more values of f;, the radius of curvature of the surface
magnetic field can be much smaller than that of the
dipole field along polar field lines, where pairs are
thought to be created.

The effect of having field structure with short radius
of curvature, p, is threefold. Most directly, the energy &
of a typical curvature photon is increased since e is
proportional to 1/p. Second, a strong component of the
magnetic field perpendicular to the direction of motion
of the photon is reached in a shorter distance, thus
increasing the optical depth for pair creation in a FHeld
of fixed strength occupying a fixed volume. Third, the
accelerating electric field (and thus photon energy) is
increased since the curvature increases the rate at which
the charge density departs from the corotation charge
density, in models with space charpe limited particle
emission from the stellar surface (see eq. [8]).

All three effects tend to shorten the mean free path
for y-ray absorption and so increase the maximum
period at which pair creation will be important. How-
ever, the inclusion of multipoles with §,>1 affects not
only the curvature of the feld but the size of the flux
tube as well. Copious pair creation at long period
requires the existence of large accelerating potentials
(voltages ~1 TV) and intense magnetic fields (B=>1
TG) in the pair creation zone. Decreasing p well below
Paipole Fequires values of B in excess of Bypq., Which is
roughly known by the observed torque on the star. The
result is that the size of the open flux tube decreases
with increasing B,,. This decreases the accelerating
voltage, owing to the closeness of the conducting
boundaries. Thus, achieving pair creation in rotating
neutron stars with periods in excess of 1 second is
nontrivial,
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In this paper, we calculate the maximum period for
pair creation when the magnetic field at the stellar
surface is the superposition of a centered dipole and a
centered, axisymmetric quadrupole whose axis is not
parallel to the dipole axis, and we show that maximum
periods in accord with observation can be obtained fora
wide range of parameters. This choice of magnetic
topology keeps the number of free parameters to a
mimimum, In addition, in some magnetic decay models,
the magnetic field in older pulsars would have such a
structure as the pulsar cutoff is approached. We do not
calculate detailed models of the current flow and plasma
production. when P is substantially less than the cutoff
period. In § II we outline cur assumptions and method
of solution for finding the maximum period for pair
creation in an object of fixed dipole and quadrupole
moments.

We present our specific models and results for the
cutoff pericd in § III, showing the dependence on
magnetic dipolar surface strength By, on the ratio of the
polar quadrupole field to the polar dipole field, and on
the orientation of the dipole moment and the quadrupole
moment to the rotation axis. These results are applied to
simple models of magnetic field decay and orientation
in § IV. Observational consequences of higher order
multipoles are presented in § V, with our final conclu-
sions given in § VL

11. ASSUMPTIONS AND METHOD OF SOLUTION

a) Assumptions

The basic assumptions are those of AS. We assume
2 - B >0 over the whole polar cap, where the open flux
tube intersects the stellar surface. The electrical forces
then lead to extraction of electrons from the polar cap;
these are assumed to be freely available from the dense
stellar surface, so that E+« B=0 at r = R, where E is the
electric field, We assume this electrical extraction leads
to current flow within the polar flux tube, and assume
the necessary return currents are formed by flow across
B in the outer magnetosphere. The flow is assumed to be
steady in the corotating frame. A return current is
assumed to form near the light cylinder where the
increase in pyroradius and the longer lifetime against
synchrotron radiation losses allow cross-field motion of
the electrons, permitting a current to return to the star
at lower magnetic colatitudes. The details of the return
current are largely unexplored but are qualitatively dis-
cussed by Arons (1979, 1981a). For this discussion we
simply postulate the existence of such a flow.

The boundary of the polar flux tube is assumed to be
a good conductor, because of plasma drawn up from the
stellar surface along closed field lines, or from pair
creation by y-rays emitted within the polar flux tube but
absorbed in the closed zone, or because of plasma
circulation and precipitation at high altitude, r~¢/£,.
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F1G. 1.—Magnetic field geometry, The magnetic dipole axis, u,
is inclinded by angle, {, [rom the rotation axis £. The axis of
symmetry of the quadrupole, {2, is tilted from the dipole axis by an
angle, iqp, and the (g, @)-plane is titled by the dihedral angle a
from the (£, p)-plane.

The main change from the assumptions of AS is in
the new mapnetic geometry at low altitude. A small
radius of curvature of the magnetic field occurs when a
dipole feld line far from the star is directed towards a
pole of the quadrupole whose polarity is opposite to that
of the dipole field, thus causing the field line to be
redirected toward a region of the correct polarity near
the stellar surface. We assume the presence of an
axisymmetric magnetic quadrupole, @, inclined by an
angle ip from the dipole axis, p. In turn p is inclined
by the obliquity { from the angular velocity £,.
The dihedral angle between the (p, @)-plane and the
(i, £,)-plane is denoted by «, which is allowed to be
arbitrary (see Fig. 1). The magnetic fields are specified
by

R.y\?
BrD:BD(T) cos f,,

Ro\3
BUD=§BD(T) sinfl,,

1 Ry* 2
B,Q=5BQ(-;~) (3 CDS“BQ—I),

R.\4 .
BUQ“BQ(T) cos B sin 6, , (1)

where (B,p, Byp), (B,p, Byp) are the ‘dipole and
quadrupole field components referred to the dipole and
quadrupole axes, respectively, with magnetic colatitudes
0, and 6. By and B, are the field strengths at the
respective poles 8 =0, 8, =0.
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b) Geometry of the Polar, “Open” Flux Tube

A physical definition of the polar flux tube requires
the construction of a global model of the magneto-
sphere, including the flow of conduction currents. Here
we adopt a simple kinematic description, with parame-
ters chosen in a manner similar to the description of
Goldreich and Julian (1969). We assume that field lines
of the dipole which pass exterior to a radius R, = f.c /0
in the magnetic equator of the dipole are the field lines
defining the polar flux tube. Here f,. is a dimensionless
number of order unity, in which we express our uncer-
tainty about the details of the cuter magnetosphere.

The field lines are determined by integrating the
system:

rdf,  rsinfpdep
BU - B¢ (2)

dr
B,

from r=R,,8,=m/2 inward to r= R,. Here ¢, is the
dipole magnetic azimuth, Note that the components of
the total magnetic field appear in (2) even though dipole
magnetic coordinates are used. Instead of inteprating the
full three-dimensional equations {2) for all values of ¢,
we simply integrated in the (p, @) plane within which
the field lines are coplanar, and the system of differen-
tial equations reduces to:

dr _ B’
d—ED-——r'B—a. (3)

Integration of (3) yields two points on the intersection
of the polar flux tube with the stellar surface. From the
reflection symmetry of the dipole and quadrupole field
across the (p, @)-plane we know that a good approxi-
mation of the cross sectional shape of the polar flux
tubes will be an ellipse with one of the principle axes in
the (p,@)-plane. One semiaxis of the ellipse Ax(r) is
determined by numerical integration of (3). The other
semiaxis is determined by flux conservation. To first

~orderin R, /R, the magnetic flux of the polar flux tube

is the dipolar flux crossing outside R ;:
F=@~=WBDR3(—*). (4)

At fixed radivs r<« R,, the magnetic field is ap-
proximately constant over the area of the tube. There-
fore the other semiaxis is:

_ R, By R,
ay(r) "R, B(r) Ax(r)

R, (5)

Some examples of flux tube shapes are shown in Fig-
ure 2.
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Fi. 2.—Examples of polar flux tubes. Sefid lines, two exam-
ples of flow tubes with a nonzero magnetic guadrupole moment.
(a) ign=83°, gb) igp=45° In both (a) and (b) f=4 and
RQ/c=3%107". Dashed Lines in {h): Flow tube of purc dipole
field, with same period. Note that the curvature of the dipole field
is imperceptible on this scale although clearly seen from the curves
in which 80,

In actually solving (3) we begin at r =R, 8, =7/2,
with the magnetic field given as a dipole plus a small
perturbing component from the quadrupole. This allows
an analytic solution for the field lines in the (m,@)-
planes, valid when r>» B8R, if 8= 1 (Here 8= B, /Bp).
Near the star, this analytic solution is continued to the
surface by numerical integration. (The analytic solution
is presented in Appendix B.)

c) Poisson Equation and Accelerating Potential

Because the system is steady in the corotating frame,
there exists a potential @ such that the electric field
E=—c (Q.Xr)XB—v® (Backus 1956; Mestel
1971). From Poisson’s equation, @ satisfies (6):

— v 0 =4n(n—ng), (6)

with 5 =charge density and

- Q-8 ri2 2-B
2mc +0(T. 2qc )

M= 3 (7
7 is the charge density such that ® =0, and the electric
field vanishes in the corotating frame (Goldreich and
Juilian 1969).

We consider geometries such that £-B>0 at the
stellar surface. Therefore, equation (7) shows that only
electrons are electrically extracted from the star. When
the field is favorably curved at the stellar surface, par-
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ticles become relativistic in a distance ~c¢/w, =
c(m,/dmelna(R|)/* which is much less than a
polar cap width (Michel 1975; Fawley, Arons, and
Scharlemann 1977, hereafter FAS). So, with speed ~
constant ~ ¢, continuity of flow and conservation of
flux yield noc B. The requircment that the flow be
space-charge limited (E+B=0 at the stellar surface)
yields: 7= n4(R)(B/B,)+small corrections. Also we
assume B,= B(r= R,)= constant across the open flux
tube. Then Poisson’s equation is:

—vro=am| 21— . ®

cos &,

Here ¢ = £ [B(#),Q,] and {,={(r=R,) on the field
line which passes through the point r, If the field lines
are straight, {,={, ® = constant (Tademaru 1974) and
no acceleration occurs. If {<¢{, and if cos {>cos{,,
the flux tube bends toward the axis of rotation while the
field lines point from the axis, and the flow of charge
along B fails to supply the charge density required to
keep ®=0 at any point > R,. This portion of the
magnetosphere is then starved of charpe, and the “star-
vation” electric field (Arons 19814a) accelerates the elec-
trons to very high energy. In the geometries of interest
here, the curvature of the flux tube as a whole is much
greater than the curvature of the field line due to the
increase of the cross section with altitude, in contrast to
the dipolar flux tube considered in previous work. Then
$(r) = §(r) and i — 7 is almost constant across 4 ¢ross
section of the flux tube at a given radius,

The remaining boundary conditions are that ® =0 on
the boundary of the flux tube. When pair creation is
important, a further boundary condition E« B/B - [ as
r— R+ his also needed (AS; Arons 19815), Here R+ h
is the altitude of the pair formation front. The former
condition represents the hypothesis that the closed zone
of the magnetosphere is unable to support the large
voltage drops present along polar field lines, because of
a denser trapped plasma. Since the polar flux tube is
long and narrow, we can now find a simple solution by
noting that v *®> v,>®. Then to an excellent ap-
proximation the potential problem is the same as that of
a grounded, infinitely long elliptical tube with constant
charge density, 7 — ng, in the interior; the height above
the stellar surface, r — R, appears only as a parameier.
The solution to this problem is found to be:

2w[11(r)-11R(r)] 2 a 2 ]
b= AxAy? —x'Ayp? — poAx?
0= (3 - wa - )
or
Q,F /
@ =——(cos ¢ —cos {4) Ay ,Ax 5
e 1+ Ap*/Ax

x(l— 2 _ ) RO
Ax? Ayt
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Equation (9) is valid when “end effects” are unim-
portant, i.e,, when Ax,Ay<r—R,, R,+h—r. Here x
and y are the Cartesian coordinates of a field point, with
origin of coordinates at the center of the ellipse, x-axis
in the {(p,@)-plane and y-axis perpendicular to this
plane, Ax(r) and A y(r) are the previously determined
semiaxes, and F is the magnetic flux in the polar flux
tube,

It-should be noted that (9) is not strictly correct in a
purely dipole flux tube, since in this case the curvature
of the field lines is dominated by the divergence of the
field lines from the magnetic axis rather than the curva-
ture of the whole flow tube. Nevertheless, the flow in the
dipole zone has the same qualitative properties exhibited
by (9).

The basic hypothesis behind (9) is that strong acceler-
alion oceurs in a distance r<<~ S8R, from the star and
that further changes in the potential do not reduce the
potential to values below @®(R,). From (9) we see that
potential increases when the flux tube curves toward the
rotation axis while directed away from the rotation axis
or if the flux tube curves away from the rolation axis
while directed toward it, both situations ensuring that
cos{ —cos{, increases monotonically. The minimum
requirement of undirectional electron flow is that
®(R )>®(R,) along a field line from the surface to
r~R,. Figure 3 shows those models for which the
central field line of the flux tube does have “favorable”
curvature for strong acceleration, for fixed iy, varying
£ and for fixed 8 varying i,p. Note that the graphs
include models in which the dipolar field is unfavorable
at high altitudes {r=c/&), even though along the
central field line each model has a nonzero potential
increase, for all models. Note also that /=0 (aligned
rotator), in some circumstances, can have finite particle
acceleration, a result of the low altitude potential dif-
ference being greater than the loss of energy occurring
in the unfavorably curved dipole zone, in contrast to the
inconsistency of such flow in the purely dipolar case
(Scharlemann, Arons, and Fawley 1978, hereafter SAF).
Actoally, when r~c/8, the question of Favorable
curvature becomes moot since 15 is no longer given by
{(— 8- B/27c). but rather is a more complicated func-
tion of position (e.g., see FASB). Since steady flow can
exist along the central field line, however, the model will
be self-consistent for some bundle of field lines along
the central one. On field lines where pairs are created
copiously at low altitudes, high-altitude curvature is less
important since the potential drop is limited by the
creation of pairs, not the high-altitude curvature; how-
ever, high-altitude curvature remains the controlling fac-
tor in the “slot gap” surrounding the pair plasma (Arons
1981a).

Thus, at least half of the configurations can maintain
the flow while the other half may not, and most likely
form an electrically trapped atmosphere with little or no
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Fic. 3.—Favorable curvature. Two examples of those areas in
the model’s parameter space which give rise to [avorable curvatore
along the central [ield line for r<<¢/8. Shown nre: {a) (top) i
versus A, with igp =457 and a=0; (h) (hoream) i versus igp with
B=4and a=0.
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current flow (SAF), a situation locally akin to possible
states of the aligned rotator (Jackson 1976; Michel and
Pellat 1981). Acceleration above the trapped zones is
possible if favorable curvature occurs at higher altitudes.

Note that these models produce potentials which are
nonmonotonic even though the net change in potential
is positive along a field line. Rylov (1979) suggests that
if the potential has a “hump” in it, as can be true for
this class of models, a population of nonstreaming elec-
trons will be trapped until the hump is removed and the
potential is monotonic. Although this is certainly an
alternative self-consistent solution, we find it to be
unphysical, since, as is pointed out by Rylov, the plasma
distribution is then highly two-stream unstable. The cold
electrons are quickly entrained by the beam, and so are
removed rapidly, requiring a replenishment rate suffi-
cient to maintain the static electrons. But since the
potential increase to the “humps” (~TeV) is much
pgreater than the initial spread of energies at the surface
{~keV), no surface parlicles will be trapped in the
hump, and the boundary conditions that ® =0 along the
flux tube eliminate the possibility of replenishment from
the closed zone. We thus argue that the nonmonotonic
potentials are not unstable to monotonic potentials sug-
gested by Rylov. However, as noted above, trapped
particle zones are indeed relevant when the geometry is
sufficiently complicated that zeros occur in the potential
when calculated on the basis of a flowing plasma.
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d) Pair Creation

When the surface magnetic field is ~ 10" gauss, the
potential (9) can easily have magnitudes ~TV or greater.
Gamma-rays which are emitted by the TeV electrons
moving on the curved field lines can create pairs through
magnetic conversion of the photons. Processes other
than curvature emission and magnetic conversion
are not important (Cheng and Ruderman 1977; FAS;
Fawley 1978), especially in the long period objects of
interest here. The characteristic photon energy is:

(ﬁ)amca (10)

2
me"-

_3%

E
2p

where X,=#/m,c=3%X10""" cm and the radius of
curvature of a field line is

372

_ [+ (dr/a8)’]
[r2+2(dr/dd) — r(d*r/a0%)]

(11)

Here dr/d@ is given by (3) and d*r/d0? is calculated
from (1) and {3) after (1} is combined in the (g, @)-plane
to obtain an expression for B in dipole coordinates.

Once we known the energy of a gamma ray at any
emission point, r,, We then calculate the optical depth
along a straight ray parallel to B(r,) and extend from r,
to infinity. The opacity for magnetic conversion is

023 Bu [ =8 By me?
K(r,e,Bi)~0.23_Kc B, exp( 38, & | (12)

(Erber 1966; Tsal and Erber 1974), where a, is the fine
structure constant, B, ()= B(r) sin ¥ is the component
of the magnetic ficld perpendicular to the ray at the
point r, ¥ is the pitch angle of the photon with respect
to B(r), and B, = mc*/eh =4.4X10"7 gauss. The mag-
netic geometry and spatial location of the emission
point are determined by the parameters P (observable),
B, (estimated from simple spin-down theory), By, i,
igp, and a (all inaccessible to direct observation). Since
the photons are emitted parallel to B(r,)= B,, B, along
a ray is simply given by B, =|B,X B{{)|/B,, where
B(!) is the magnetic field on the ray at a distance / from
the emission point. The optical depth for photons of
energy e is 7% {kdl. For the geometries considered, 7
must be evaluated numerically.

e) Method of Determining the Maximum Period of
Pair Creation

In order to determine the maximum optical depth in a
given magnetic geometry, we first integrate the field line
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equations [rom r= R to the surface for the two field
lines which form the ends of the polar flux tube in the
(1, @)-plane, and use the total open flux to find the
shape of the open flux tube. The corotation charge
density np, is then determined as is the charge density
of the electron beam, 1=1%g.(B/B,). We then rein- -
tegrate the field lines outward along the flux tube,
keeping track of the dimensions of the tube as well as
the location of the center of the tube where the potential
is maximum. The maximum y-ray energy is calculated at
each point as is the radius of curvature of the magnetic
field.

The optical depth for a photon emitted at r, is then
calculated by integrating the opacity (12) for a photon
of enerpy e[ ®(r,), p(r,)] along the ray which is tanpent
to B(r,) and begins at r,. The photon, traveling a nearly
straight path in the corotating frame, sees increasing B
as the feld curves away from the original photon direc-
tion. However, owing to the decrease of B with increas-
ing height, the opacity reaches a maximum, then rapidly
declines. The optical depth increases to a maximum
value for each emission point of interest. If 7, (r.) is
reached inside the polar flux tube, and 7, (r.)<I,
exponentially few pairs are formed, and the creation of
pairs is said to be “opacity bounded.” If 7, is reached
beyond the point where the photon crosses the closed
zone, and if v(r,, s)<1 everywhere within the polar flux
tube, then pair creation is said to be “geometry
bounded,” since production of pairs in the closed zone is
unlikely to contribute to radio emission in the open
zone. In a pulsar which does create pairs in the open
fiux tube the additional formation of pairs in the closed
zone by photons of energy e<<g, in the curvature spec-
trum is an important contribution to plasma in the
closed zone and so helps justify our use of conductive
boundary conditions for the palar flux tube.

In a piven magnetic geometry we find the maximum
period for pair creation by finding the period P, such
that for P> P, all emission points along the central
field line of the polar flux tube have 7, (r,)<<1, or are
geometry bounded. For P<P,, there is at least one
point r, where 7,,,.(r,)>1 inside the polar flux tube. The
exponential form of the opacity assures us that pair
creation will be copions when P < P, and by assump-
tion results in radio emitting pulsars. For P> P, the
pumber of pairs per primary electron is exponentially
small, leading (perhaps) to pure y-ray pulsars (Fawley
1978; SAF; Kennel 1979; Scharlemann 1979; Harding
1981). P, is determined as a function of By, By, and the
various angles by varying these parameters over the
range of interest.

III. RESULTS WITH GENERAL OBLIQUITY
~ The simplest geometry considered was obtained when
p and Q are aligned (i, =0). The resulting axial sym-
metry allows an analytic solution, which is presented in
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FiG. 4.— P, vs. 8. The maximum period for pair creation is

given as & function of A for three values of igp with i(=457),
a{ =0), and By = 44X 10'? gauss) held constant. The dotled line
is our analytic approximation which is applied in the text to
evolutionary scenarios, The circle gives the result of AS for a pure
dipele field.

Appendix A. When the dipole is tipped with respect to
the quadrupole, axial symmetry with respect to the
magpnetic axis is lost, so the numerical approach outlined
in § II applies. For a piven geometry (iyp, {, and a),
dipole ficld strengths Bj, and field strength ratio 8, we
determine the maximum period such that =1 at one
point along the central ray of the flux tube and » <1
everywhere else. Our results for P, are presented in
Figure 4. The most important parameters are iy, and ,
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for these determine p while @ and / enter into the
problem only through £+ B in 7,. The quantity p, is
plotied as a function of i, and B in Figore 5a. Also the
dipole latitude of the polar cap is shown in Figure 55. In
these general geometries, the full requirement for pair
creation in long-period pulsars (p < py,,. With poten-
tials and field strengths comparable to the dipolar val-
nes) are achieved. It can be seen that for small values of
B, P.... approaches the dipole value found by AS, when
the radius of curvature of the twisting flow tube in the
perturbed dipole case is on the order of the radius of
curvature of the diverging flow tube of the pure dipole
case, The largest value of P, is found for 8~6;
however, once >3, the maximum period is quite in-
sensitive to 8. This result is a consequence of several
competing effects. As # is increased to values greatly
exceeding unity, the local geometry as r=~R,, reverts to
an approximately pure quadrupole. From flux conserva-
tion, the area of the flow tube decreases in proportion to
1/B. In addition, p increases in proportion to 8 since p
is proportional to the radius at which the quadrupole
merges with the dipole. These effects reduce @ (which is
proportional to the area of the flux tube and decreases
when p increases since 1 — 1, varies inversely with p).
They also reduce e, which is proportional to p~'®?, and
reduce the pitch angle ¥ ccp™! for a fixed distance of
travel, thus reducing the overall opacity. However, as 8
increases, B increases linearly with 8 so that B, remains
fixed, and @ is increased simply because 5 — 7y is pro-
portional to Bocff. The net effect is to yield a P,
largely independent of B as long as 8>13.

The effect of varying iy, is also straightforward. The
quadrupole, being axisymmetric, has a beltlike zone of

]
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F1a. 5.—(a) Radius of curvature of central field line at stellar surface. Note that p, increases as f increases and as { g, decreases, For
B <1, p, increases as B decrenses. (b) Magnetic colatitude of central field line at stellar surface, for various values of A, plotted as a function

of ‘.QD‘
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flux emerging from the star in addition to two poles
similar in character to the dipolar poles. When i, =0,
the dipole field in one hemisphere merges into the
equatorial belt region, described in Appendix A. The
efficiency for pair creation is reduced because of the
narrow striplike character of the zone. (The other hemi-
sphere has quadrupole and dipole fields aligned at the
surface and hardly differs from the dipole case)) When
igp~1, however, the dipolar flux tube is rerouted by an
angle ~ i, when £ >1 while still preserving its tubelike
character, so that small p is achieved without sacrificing
the large magnitude of the potential and opacity achieved
in the dipole case,

To determine their effect on P,,,,, each of the quanti-
ties (Af,,; /Abeom)s (/€ ), Bp, and R were varied
independently. Here (Af,,, /AfGgon) is the ratio of the
actual cap width to the width of the cap found by
tracing the field line passing through the magnetic equa-
tor at §;, =u/2; £/, is the ratio of the actual photon
energy to twice the peak of the curvature spectrum. The
parameter g.;, was defined to be at twice the energy of
the peak in the curvature spectrum because previonus
work {AS; Arons 19§16} showed that the pair creation
rate is maximum at their energy, owing to the higher
energy albeit lower emission rate than the actual peak in
the curvature spectrum,

Combining these effects into a single relation yields:

AG 1.0 0.04 0.68
pmoc( eap ) (mf...) ( By )
. Abeom Eerit 44X10°°G

| lfgm)]'z. (13)

Although Figure 4 is the most accurate representation of
our results, for the evolutionary applications which fol-
low, P, can be represented approximately by:

16, _ .o
P =PIEHP5( Abug ) ( 3 )W
s e AMgpom Eerit

x( BD )O.GH ( R )Ils‘
44%1012 G 10 km (14)

Here Pp=0.15 5, Ppp=<3.08 s, and a=¢" A Py, de-
pends on /gy, a, and / and is graphed as function of the
parameters in Figure 6. Py, was found numerically
to be a linear function of iy,. For example, when
a=0, i=45° and ipp=81°, Py, satisfies: Pyp=
3.08(inp/81°) s. Although in AS, Py, cx(sin )5/ "Bf/Y,
we have neglected the dependence of Pp, on sin/ and B,
in (14), since it is applied to cut off in the real P-P
diagram only when a =0 (§ IV).
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FiG. 6.~Examples of Pgp plotled as a [unction of model
parameters, (a) (top) Pop vs. i, (=0 and igp==45%) and (h)
(bottom) Pgpy vs. & (i =43°, igpn =45°). The sharp drop in Pgp, in
(a) and the zero value of Pgp in (o) and (b} are due to the
changeover from favorable to unfavorable curvature. In some cases
with unfavorable curvaiure at the surface, trapped particle zones
may occur at the stellar surface, with acceleration occurring higher
up, yielding nonzero P, in the regions where our Pop formally
indicates P, =0. The sharp boundaries between Fyp=0 and
Pop#0 in the figure is thus due in part to our requirement of
favorable curvature at the surface.

Thus far, we_have assumed the simple space-charge
limited flow of electrons from the surface is the basic
source of y-ray emission and therefore of pairs. This
may seem restrictive, given the plethora of alternative
models based on jon zome physics (RS; Cheng and
Ruderman 1977, 1980; Jones 1978, 1979, 1980) pro-
posed in the literature. However, our conclusions are
more general. In all of these models including our own,
pair creation cutoff occurs basically because a threshold

voltage for pair creation @y Byyriaces P)~ 102V (with @,

almost independent of B, P) becomes smaller than the
maximum voltage available on open field lines (cf. eq.

i9D):

D

1 { R:24\2 )

mnng_( ) B, R, cosi. (15)
pc

The main effect of the short radii of curvature in the

models discussed here is to allow voltages of this magni-

tude to be reached in the low altitude high opacity

region r=2fR,, even with free emission of particles

fr

N
0.
tt
W

o

= o

Ll =l el |

o




No. 2, 1982

from the surface. The resulting P, can be written:

—1/2 1/2
P =16f3'7" & _ B
mas pe 1012V 44X10" G

X (cos )7 s. ' (16)

Note that the exponent of B, in (16) is 4, compared to
0.68. for the present paper and similar values in other
theories. The departure from % indicates the extent to
which the potential systematically departs from the as-
sumed constant potential drop of 10" V. (For a com-
parison with other theories, cf. eq. [18] and Table 1.)

IV. THE RELATION OF P,  TO THE OBSERVED
CUTOFF IN THE P- P DIAGRAM

We assume that the apparent sharp absence of pulsars
in the P-P diagram (observed by Lyne, Ritchings, and
Smith 1975 to occur if P <~4.6X107"7 P*, where P is
measured in seconds s™') is due to the cessation of pair
creation. If this assumption is true, a number of factors
affect the location of the cutoff line in the P-P diagram.

1. Evclutionary history of the surface field complex-
ity, assumed in this analysis to be composed only of the
quadrupole and dipole components.

2, Evolutionary history of the strength and inclina-
tion of the dipole field.

3. Departure of the field near the light cylinder from
that of a rapidly rotating magnetic dipole.

The first factor connects P, to the age of a pulsar,
while the second factor connects the torque (and so P)
to ape. The third factor enters in two ways: Distortions
near the light cylinder may cause the last closed field
line to be interior to R; (= ¢/{2) which we have defined
before as R ;. On the other hand, if the rotational energy
Joss, £, is dominated by the electromagnetic torque,
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estimated to be (Goldreich, Pacini, and Rees 1971;
Arons 1981c¢)

E~cR3:B}~ cp*/ RS, (17)

where R is the radius at which By, and B, are equal and
B, is the magnitude of B at this radins. R, and R, may
in fact be equal, but for the moment we maintain their
generality.

Since there are uncertainties in our knowledge in each
of the three factors affecting the cutoff line, we will
simply identify some plausible hypotheses concerning
magnetic field evolution and indicate the effect each
hypothesis has on the cutoff line, separately.

To be specific, we consider the following four differ-
ent scenarios:

A) R, and R+ R;.—The surface and dipole fields
are assumed static in time, although we allow for the
possibility of plasma-induced modifications to the outer
magnetosphere (Roberts and Sturrock 1972; RS).

B) Field decay.—We assume the dipole and quadru-
pole moments suffer Cowling mode decay (suggested by
Gunn and Ostriker 1969), such that B, = Bjge” ' and
By = Byge™ "¢, where y, =3.33y, (Lamb 1883) and 0
indicates initial values.

C) Field complication.— We assume, following a
suggestion of Flowers and Ruderman (1977), that due to
the interaction between decay of-poloidal currents in the
resistive crust with MHD motions in the highly conduct-
ing, core, the surface fields tend to become more com-
plex with time while the magnitude of the surface felds
remains fairly constant. We model this by assuming
Bp, = Bpee™ " while By = B,(1—e™"). Note that we
have assumed B and B, change at the same rate, and
that v is related to the crustal decay time

3
then the energy loss is just the integral of the Poynting .t (AR?),
flux over a surface enclosing the star which can be 470 g
TABLE |
PARAMETERS FOR P, IN POLAR CAP, PAIR PRODUCTION MODELS
Ay (4.4X10" pauss)y” .
Relerence n f P Remarks
Sturrock 1971 ....... 0.57 2R /108 em)™?
RS1975 ooivvininens 0.62 42 (R /105 co)*/13(p /108 cm)~4/13
Cheng and
Ruderman 1977, .. 0.71 3.9 (p/10% cm)™*/7 Curvature radiation produced
0.60 1.2( frs /01747 Lerentz-boosted pair production { fpg =
fraction of polar cap filled by spark)
AS 1979 ...l S 0531 4 —60  LS{R/108 cm)"’/'s(_ls/ 108 em)~*/"  Multipole estimate
047 35  —65 017(R/10%cmy!/! Pure dipole
Jones 1980........... 050 ... 11(R /108 cm)?/2
This work 1982...... 0.68 3.0(R /10% cm)'?
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Opruse = Crustal conductivity=10% g,; s/, so that y ™'~

2X10° o,3(AR /1 km)?* years. It is possible to have
g;3«1 if one accounts for inhomogeneities in the
Coulomb lattice.

D) Dipole alignment.—We assume constant B, By,
a,iyp, but assume that i obeys sin i =sin ije™"/", where
iy is the original value of i. Dipole alignment implies
decay of the torque if the aligned rotator is electromag-
netically quiescent (e.g., SAF 1978; Michel and Pellat
1981), in contrast to the scenario of Goldreich and
Tulian (1969).

Scenarios B, C, and D all imply decay of the torque
as the star ages and crosses the P-P diagram. On ob-
servational grounds this statement is well founded for
four reasons;

1. A much smaller range in initial magnetic field
strengths is required to match the observed range in P
(Lyne, Ritchings, and Smith 1975 [LRS]).

2. The lower left edge to the distribution of pulsars is
best fitted by a decaying torque model (LRS; Fujimura
and Kennel 1979).

3. The number of pulsars per unit age imterval is
approximately constant for early ages only if torque
decays with v ~10° years (Fujimura and Kennel 1979;
Phinney and Blandford 1981).

4. The existence of many pulsars with apparent ages
(P/P) of 107 to 10" years contradicts the observed
kinematic age of pulsars of ~10° years (based on veloci-
ties deduced from proper motions and distances de-
duced from dispersion measures) (Gunn and Ostriker
1970; Manchester and Taylor 1977).

Although the original motivation for appealing to
torque decay (absence of large period pulsars) (Gunn
and Ostriker 1969) is removed, the evidence is still
strong that the torque nevertheless decays, Bach of the
theoretical mechanisms for torque decay, however, has
its problems. The Cowling mode decay (Gunn and
Ostriker 1969) may be true for the crust; but if the field
is rooted deep in the core, the conductivity is expected
to be higher, since the core is likely to be superconduct-
ing (Baym, Pethick, and Sutherland 1971). Flowers and
Ruderman (1977}, however, have observed that the
fluidity of the core implies that the dipole field is MHD
unstable to formation of higher order multiple compo-
nents, thereby reducing the total external magnetic en-
ergy (see also Markey and Tayler 1973 for quantitative
theory). However, they also realized that a toroidal
magnetic field may exist which prevents the instability,
and that the toroidal field requires poloidal currents
which may pass through the crust. Ohmic decay of these
currents on the crustal decay time could then result in
decay of the dipole on the same time scale, converting
the dipole field into quadrupole and higher order com-
ponents. As vet, no quantitative calculations of this
effect have been carried out, Alignment has been theo-
retically described by Michel and Goldwire {1970) and
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Davis and Goldstein (1970) using a rigid conducting
magnetized sphere in vacuum as a model for the neutron
star. In this model, alignment occurs exponentially on a
time scale determined by the initial value of & cosi.
Goldreich (1970) and Macy (1974) have shown, how-
ever, that the ratio of poloidal to toroidal interior field
strengths plays an important role, making alignment for
most pulsars more praoblematic. Jones (1976) also con-
sidered alignment, and assumed that interior poloidal
fields are dominant and are the dominant factor which
determines the departure of the moment of inertia from
that of a sphere. Goldreich and Julian (1969) suggested
that torques associated with conduction current flow in
the aligned rotator may be comparable to those of the
vacuum rotator. If true, alignment does not imply sub-
stantial torque decay. However, recent work {Okamoto
1974; Holloway 1975; Jackson 1976; SAF; Michel 1979;
Michel and Pellat 1981) have revealed a host of dif-
ficulties with the view that alipned rotators are indeed
similar to oblique rotators in' their gross spin-down
properties. Indeed, it has been argued (SAF; Arons
1979, 1981a; Michel and Pellat 1981) the aligned cases
and sufficiently oblique cases may be intrinsically differ-
ent. We assume this latter point of view here, and go
further to assume the torque is proportional to sin® i, as
in the vacuum case,

For most polar-cap pair-creation models, including
those in this paper, we may write, in general,

Py = A\ [ B(1)] BE(£) ffesin' i (1) (18)

B3(t) sin® i{r) = A, PPf}, (19)

where A\, p,n,f,,=R,/R;, fr=Ry/R, are de-
termined by the model and scenarjo selected and are
summarized for various models in Table 1. Note
that (19) is identical to (17) except that normalization is
such as to yield the spin-down rate of the vacuum
rotator when f=1. (18) has the same form as {14} if
n=.68, /=0, and p=—1/2 since f.=R,/R;=
(Abgpom/Ab.p)%. Also A,=(44X10% Q)" Py3°PE
with a=e~#. Here 4, =4Ic*/(27)*RS, I is the moment
of inertia of the neutron star,

As a phenomenological way of accounting for f and
fpe 71 we assume fr = fyP™P* and .= f,P9P" where
for fr1s m, k, g, r can be varied from their vacuum rotator
values to isolate their effects on the cut-off line, As
discussed earlier, the torque on neutron stars apparenily
decays on a time scale of 3X 10° to 108 years, If it is due
to alignment then sin{ & e~'/", If there is no alignment
then 7 — co, and B oce™
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With these assumptions the pair production cut-off
line in the P-P diagram will be given by:

[(2q+')r+1)7]rs/FlA—"/ElA—Jt/E|f An/E|

cnt
Xﬁ]_?'P/E' (5111 I-U)(EJ"'?-")/E!PEZ/E
for P/rP»2q+2r+1

= AT/ Es g nd B prn/ By 2/ Ee(gin § Y320/ B pEy /By

for P/tP<2g+2r+1, (20)

where E\=2pk+a4rl+{, E,=2+1-2n—4m—2pm
—dgn+4rl, E;=4m+n—4rl— 1, E;,=nr+2pk+4dm,
and Es=2—n—4gn—2pm. If E,=0, the cutoff line is
vertical and -

P = AT/ E2AR B i B fl B (2 20 +1)] B/
X [sinig]® 7" for P/rP»2g+2r+1.
If E, =0, the cutoff line is also vertical and
P = A}/ B AY/ B/ B3 20 B sin 19|02/ 5

for P/7P<2g+qr+1.
Here we have made use of the fact that

sin § =sin fge ™"/ =sin fr+ /2

P —(4r+13/2

sarey2p &
xz [2q+2r+1

+ 'rP]

can be written

4dgt1 2 )f(.l_ ) 2
ar+1 )+(4r+1 {7t @D
if it is assumed that =1 =0 vp=0, 7=

sini=1, I~10% g-cm?, and A=4, the resulting cutoff
line is given in Figure 7a. As is true of other pair
creation models (Sturrock 1971; RS5; AS), the line is
shallower than the observed cutoff, Allowing for a dis-
tribution in mass and therefore in moment of inertia
and surface field strength {Fujimura and Kennel 1980)
smears out the cutoff but still does not match the slope
or include all of the known pulsars. Allowing for a
distribution in sin i, results in a similar situation. We
now proceed to identify the effects on the cutoff line of
the relaxation of some of the above assumptions. From
(13), we always have n=0.68 and p= —0.5, since
BB, /Do = fra /™.

The braking index, N =Q{ /2,

_—

a) frs fpe 71
‘Ignoring torque decay for the moment we can de-
termine the f;. or f,. required to match the observed
cutoff line (P ~4, 6X10~ p3), to equation (20). If the
‘torque is reasonably given by the vacuum torque { fr =
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1}, but we allow for departures in polar cap size, match-
ing the slopes of the observed and theoretical lines
requires 5k + m =2.08. If £ =0 (i.e., insensitivity to P),
m=2.08 and f.=0.16 P*!, thus requiring pulsars with
periods less than 2.4 s to have substantially larger polar
caps than expected from simple open field line models.
If, on the other hand, m =0 (insensitivity to P}, then
k=042 and f,.=0.55 pia (where Ps=B/107"),
yielding values ofj;c of 008 at P=10""to f,.=3.8 at

P=10""% Thus a wider polar cap at low °P and a
narrower one at large P is required to match the data.
However, if we assume f, =1, and adjust fr, matching
the slopes of the observed and theoretical lines requires
g+5r=—0.76. The braking index can also be used to
constrain 4 and r if we assume that all pulsars have the
same N. The only object with a well measured value of
N is the Crab (Groth 1975), where N ~2.5. Since for the
Crab P/P'é:fr, equation (18) ylelds 4q—?r+05 0,
so that fr=1.6 P %"%P 012 requiring an “effective
torquing radius” slightly larger (smaller) than ¢/& at
small (large) P. If we now identify R, with R, such
that f..= f7-= f, using the same procedure as above we
find that f=18P702p; 0% which requires smaller
polar caps than given by extrapolating the field lines
from the light cylinder.

Notice that only small systematic perturbations of
the model are required to achieve a correct lime. It
is fortunate that f~1 is all that is needed because the
following heuristic argument requires [ to be on the
order of unity: The magnetic Held will be essentially
dipolar in the regime BR,<r< f(c/) so that (1})—
B~B,(R,/r). The set of open field lines will be
determined by the requirement that the particle ki-
netic energy density not exceed the magnetic energy
at the last closed field line. Thus B*(r = fc/Q)/8m =~
Nl ®B(r= fc/Q)/B,. Here A® is the maximum
available potential drop; from (9), A®~f~Y(R,&/
¢)2B, R. Substituting for B(#), 14, and AR require that
f?~1. This argument is equivalent to the detailed re-
sults of SAF, and applies either when pair creation is
absent or when the potential drop at low altitude used
to accelerate the primary beam and form pairs is of the
order of the maximum potential, as is true in these
models for pulsars near cutoff. An equivalent conclusion
is reached when the induced B-field at the maximum
radius of the last closed feld line (due to current along
open field lines) is compared with the dipole field (e.g.,
Scharlemann 1979). Then an induced toroidal field com-
parable to the dipole field at r=fc/Q also requires
[~

Since pair creation in pulsars not near pair creation
threshold probably reduces the available plasma energy
density much below the maximum, a plausible physical
interpretation of the ad hoc adjustment is f-=1 but
Joe 7 1, since the geometry of current flow along B may
depend on the magneiosphere siructure, which may vary
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FIG. 7.—(a) The cutoff Iine in the P-P diagram for pulsars with felds which are assumed to be static in strength and orientation in the
rotating frame, and with moderately strong quadrupole component f =6. () The cutoff ine for decaying dipole and quadrupele components
as discussed in § IVD. The initial q‘uadmpole-dipole ratia is given by By, and the dipole decay rate is given by y. ;=4 for lines 1 and 3,

=3%10° years for lines 1 and 2 and y~'=13x10% years for lincs 3 and 4, {¢) The cutoff line for a
| as discussed in § TVe. y~'=3X 105, 1X10° and 3107 years [or
cutoff lines 1, 2, and 3, respectively, (&} The cutoff line for a constant f but with sin 7 exponentially decaying on o time scale, T, as in § Ivd,
In this figure (as well as 7a, 7b, and Te) sin iy =1 is assumed,

while 8, =8 for lines 2 and 4. y~
growing quadrupole and decaying dipole, both on time scales of y~
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as the pulsar ages. An example of this effect occurs if £2
aligns with p on the P/P time scale. Then the area of
the favorably curved flux tube decreases with ape (as-
suming i, is small), since in the aligned (purely dipole)
rotator no field lines are favorably curved. The sense of
this alignment effect is the opposite of what is needed to
explain the cutoff line in the P-P diagram as an effect of
pair creation, and may have more to do with the depen-
dence of pulse widths on age. Indeed, most evolutionary
effects are not likely to lead to enlargement of the polar
cap (relative to Goldreich and Julian’s estimate) for
small P objects, which leads us to prefer the evolution-
ary effects discussed below, but the question of sys-
tematic departures of the area of the current flow tube
from the conventional form, area < P~', for reasons
other than alignment is guite open.

We now consider explicitly the effects on the cutoff
line of models in which the torque decays on a time
scale of ~ 108 years.

&) Dipole and Quadrupole Field Decay:
Bp=Bpgexp (— vyt) and
By = Bggexp (—3.33v,1)

In this scenario, A, of equation (18) is not a constant,
but is given by equation (14) where B=B(1)=
By exp (—Ty,t/3). Then B=B4(Bp/Bpy)" . It is easy
to show that when sini=siniy, P» Py, and f,. = f; =

f f Pm})k
(144K} /2
} . ()

In (18) A, =(44X10" gauss)™"Py~°P§ with a=e"",
Thus, the cutoff line is determined implicitly through
equation (20). The parameters y, and S, are the im-
portant free parameters. Figure 75 shows examples of
cutoff lines in this model when f=1. The slope is even
shallower than in the nondecaying model, since at larger
ages (small P) the dipole field dominates, reducing the
maximum period for pair creation and flatiening the
cutoff line. The combination of scenarios A and B then
requires even more severe distortion (Jarger k and m) of
the outer magnetosphere and polar cap size from the
geometric estimate than is needed for nondecaying fields,
in order to produce a slope in agreement with the data.

In this paper we considered only large scale {(dipole
and quadrupole) fields. Surface fields with spatial scales
smaller than AR = R, — R cgyust, corresponding to mul-
tipoles of order /== R, /AR decay on the crustal time
scale v '~3X10°04,(1/1)* years. Thus inclusion of
higher order multipoles will not alter the slope substan-
tially, since they will in general decay on an even more
rapid time scale, Also, their addition will not substan-
tially change the physics of pair production since the
maximum available potential drops occur when p ~ R,

By _ 1+2(k+m)P
Bpy |y, P+[1+2(k+m)]P

with Further shortening of p hindering the global steady
flow.

¢) Magnetic Field Complication

We assume Bp, /B, = e~ and B, =constant, imply-
ing

B= e‘f'—1={7P+ [1+2(k+m)P] }"*‘”‘"’2

[1+2(k+m)] P -l

Again A, is given by equation (14). Figure 7c shows the
cutoff lines for this model, for various values of y. It is
clear that for large values of P (young stars) the pure
dipole line is obtained whereas for low P (old stars) the
large quadrupole plus moderate dipole line is ap-
proached.

The transition is accomplished with P, determined
by v. For this model to be compatible with the observed
distributions we must choose P, =10""s s7' or
v~ 1510° years, in contradiction to the observed decay
time of ~10% years. Physically, this indicates that if
quadrupole growth occurs on the same time scale as
dipole decay, then field line curvature does not occur
soon enough in a pulsar’s life to account for most
pulsars. We point out, however, that the time scale for
higher multipole growth may be shorter than the time
scale for dipole decay; in our wark here, we assumed
these time scales to be the same. Clearly, quantitative
models of this effect are of interest. Only if higher
multipole growth times are longer than the dipole decay
time scale will this scenario be in violation of the
observed P-P distribution.

1t has not escaped our attention that the upper cutoff
line, P= Pmms, may be used to explain the absence of
pulsars with P>107'*" if the time scale were short
enough. However, the number of pulsars with high P
(shown in Fig. 7) is close to the number expected on the
basis of time spent in that portion of the diagram, so no
further explanation is needed. However, models of this
type predict the absence of stars in the large P region of
the diagram, which may be testable as the number of
stars with measured P increases.

d) Alignment

Here sini=sinize™"/", and, as discussed above, we
assume the torque decays as i —0 in a manner similar to
the vacuum rotator. When 7:» 7, the frst of equations
(20) is relevant. 4, =(4.41x10" gauss)"”PgP‘D is as-

sumned to be constant, typical of the complex fzeld values
of ﬁ 5. The resulting cutoff line is illustrated in Figure
7d, in which f=1 and P> F, are assumed. The curve is
easily understood. For large B, /7 <1 and alignment is
negligible. Then the nonahgmng, nondecaying cutoff
line is appropriate. For ¢ /71, pulsars evolve on verti-
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cal tracks with constant values of P, each vertical track
obeying, P & B. Since P, & B", a maximum period for
pair creation exists independent of P. This increases the
area of the allowed region in the P-P diagram, because a
low value of P implies a small value of i, not a weak
field. This tends to increase the slope of the cutoff line
in the P-P diagram which is in the desired direction.
However; the vacuum result that PP ocsin® i overcom-
pensates and shifts a now vertical cutoff line to the right
of the distribution of pulsars. Decreasing r has the elfect
of cansing a pulsar with a given magnetic field to evolve
on an evolutionary curve which becomes vertical at a
shorter period, thus long (~107 years) decay times
would be required to place the observed cutoff line near
the observed population {cf. eq. [20], E,=0).

e) Discussion

Tt is clear that slight modifications to the dipole plus
quadrupole model without torque decay presented here
would be sufficient to match the observed cutoff line
(see § TVa). However, the evidence for torque decay is
strong, and each of the theories presented has draw-
backs tending to worsen agreement of the cutoff line
with data. In the simple Cowling mode decay, it seems
likely that higher multipole components will decay faster
than the dipole component, even if the simple spheri-
cally uniform conductivity model fails in detail, If taken
literally, this gives rise to a flatter cutoff line than is
suggested by the data, However, it has been observed
{cf. Phinney and Blandford 1980) that the number of
pulsars per unit time interval decreases when the age is
greater than one decay time (for v~ 10¢ years), which is
quite consistent with a wider distribution of initial B’s
(i.e., multipole strengths) than assumed in Figure 7.
The cutoff “line” then is really only a line at large Pbut
becomes “fuzzy” for most of the lower half of the
diagram, owing to the importance of the initial distribu-
tion of multipole componeats. The relative paucity of
pulsars at low P has also been ascribed to decrease in
beaming angle if torque decay is due to alignment. If
alignment occurs on the torque decay time scale, then
the resulting cutoff line is well to the right of the
observed distribution. Jones (1980) avoids this problem
by assuming that at large ages PP reverts to a constant
again due to the presence of a small residual torque due
to small conduction currents in the aligned rotator, thus
again shifting the line to the left and giving it a finite
slope at low P.

It is also possible that another criterion, such as the
crossing of an instability threshold for the production of
radio emission from the pair plasma or strong luminos-
ity dependence on true age (cf. Ostriker and Gunn 1969;
Manchester, private communication), would be required
to explain the details of pulsar cutoff; the pair creation
threshold is then an indirect criterion for the cessation
of radio emission.

Alignment suffers from the absence of the directly
observable consequence, that duty cycles of pulsars with
small sin/ should increase. If the opening angle of the
beam also is proportional to sin i, this objection would
be unfounded, though it would be surprising if no
strong, luminosity variation with P/P occurred. Recent
results (Manchester, private communication) do suggest
that the form of the observed cutoff line is dominated
by luminosity evolution, for which alignment may be the
most likely dynamical cause, since this can give rise to
inhibition of the conduction currents whose flow is the
basis of the radio emission (SAF; Arons 1981a; Michel
and Pellat 1981), If luminosity evolution is the cause of
the observed cutoff Tine, with Tuminosity and torque both
decaying as the pulsar aligns, our model predicts faint
pulsars to exist between the observed cutoff line and the
lower branch of the pair creation cutoff line of Figure
7d.

The alternative decay theory of Flowers and
Ruderman is not in agreement with the pair production
hypothesis and the observed time scale for torque decay,
if surface complexity arises strictly from secular MHD
instability of the B-feld with identical time scales for all
components. Table 2 summarizes the favorable and dif-
ficult aspects of each torque decay model in the context
of our steady flow mode] with a quadrupole component.

For completeness, we should also briefly review some
possible reasons for the other borders in the P-P dia-
gram, For example, at large P there is an absence of
pulsars. If a torque decay time of ~10% years is as-
sumed, then within statistical fluctuation the number of
pulsars with ages less than | decay time (still short
enough so that pair production cutoff effects are proba-
bly unimportant) is consistent with number of pulsars
with ages less than 1/10 decay time, assuming there are
equal numbers of pulsars in equal age intervals. Thus an
upper limit to the magnetic field must exist. Various
ideas have been advanced to account for this.

\. Initial conditions.—During neutron star formation
the neutron star magnetic field is simply determined by
the range in progenitor fields, with the assumption of
flux freezing during the collapse.

2. Shear strength of the crust (RS).—In this interpre-
tation RS showed that the crust shear stress cannot
support the electromagnetic stress if B,z 10" gauss. If
the large scale (poloidal) fields are supported by
{toroidal) core currents, however, the vacuum field in the
crust exerts no stress, and crustal shear strength limits
only the departure from the vacuum B-field to values
less than 10 gauss. Thus, this argument only limits the
magnitude of /> R, /A R multipoles. .

3. Insufficient field line curvature at large P/P.—1If
the surface magnetic field starts out as a simple dipole
and then becomes complicated later, the star can exist
beyond the pure dipole cutoff line even for relatively
small P. This is illustrated in Figure 7c. It is a possibility

o
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728 BARNARD AND ARONS

which is most pronounced in space-charge flow limited
models (elaborated here in the electron emission case).
Models with “vacnum™ fields near the surface, as have
been advocated for ion emission caps {RS; Jones 1978;
Cheng and Ruderman 1980), have a pure dipole cutoff
line closer to the curves appropriate to complex fields.

4, Threshold for a plasma instability needed for
coherence.—A piece of evidence suggesting that (3) or
(4) may be needed is that most of the known supernova
remnants {~100) do not have pulsars associated with
them, whereas as only two supernova remnants have
associated pulsars (Phinney and Blandford 1980), a ratio
not expected given the usual beaming angles of ~15°—
20°.

At low P and P there also is an apparent absence of
pulsars. Again initial conditions may account for the
lower limit to the initial magnetic field strength, with the
lower cutoff simply reflecting the evolutionary track of
pulsars with the lowest field strength. It is again also
possible that the criterion for a plasma instability has
not been met. For example, if the relevant criterion is
that the total energy in the gap between pair plasma and
the walls of the flow tube exceed a minimum energy
(Arons 1981a), then radio emission would cease for
pulsars below and to the left of this line. The binary
pulsar (PSR 1913--16) provides the single counterexam-
ple to the instability threshold hypothesis, however,
since its evolutionary history has presumably been dif-
ferent (giving it a short period even with a weak field).
Tts radio pulse properties however must be determined
only by its current physical conditions indicating that
the region it occupies in the PP diagram is one in which
radio emission can occur. The absence of pulsars in this
region therefore is most Lkely attrbutable to the ab-
sence of stars having evolutionary paths through that
region, or to luminosity evolution, as in the large P,
small P region.

V. POSSIBLE OBSERVATIONAL CONSEQUENCES OF
. SURFACE FIELD COMPLEXITY

A direct and unambiguous method for study of surface
magnetic fields would be the observation of cyclotron
absorption and scattering of soft X-ray photons in the
low altitude field (AS; Arons 1979), emitted either by
the heated polar caps or from other parts of the surface.
If the region of radio emission, however, extends to
within a radius r=<28R,100 km, some aspects of
radio pulse morphology may be modified by such low
altitude structure. In particular, separate pulse compo-
pents (“interpulses™) and/or pulses with larpe duty
cycles may be formed because of the change in beaming
direction with altitude, It is notable that if one assunies
the existence of a radius to frequency map in the radio
emission, such low altitudes may be required by the
absence of aberration and time delay effects on the wave
forms (Cordes 1978, 1981; Matese and Whitmire 1980).
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Interpulses may arise from at least three sources: very
wide hollow cones (Manchester and Lyne 1977), emis-
sion from opposite poles, and complex flux tubes from
one pole. The three cases may be distinguishable by
analysis of the polarization position angle as a function
of longitude.

In the original idea of Radhakrishnan and Cooke
(1969), the swing in position angle is due to a rotating
vector (for example, the radius of curvature vector) as
the line of sight samples different parts of the open flux
tube. If this hypothesis is correct, then interpulses from
the three different mechanisms will have different
polarization swings. In a hollow cone the position angle
swing should make one continuous curve, even though
the intensity decreases between puises. That is, one S
shaped curve will result if i, the angle between £ and
the observer, is close to i. If |ip—i| is greater than a
small fraction of the opening angle of the flux tube, the
curve will appear more linear but still continuous. {Or-
thogonal mode transitions are assumed here to be trans-
fer effects which can be transformed away to indicate
the underlying structure [cf. Backer, Rankin, and
Campbell 1976].

For orthogonal rotators, two S shaped or linear
polarization swings can occur, having the property that
the second pulse polarization swing will not be a simple
extrapolation of the polarization sweep of the first pulse.

Low altitude emission beamed along B from 7 <28R,
has quite different polarization and beaming properties.
Because the whole flux tube curves, the observer’s line
of sight is tanpent to B only for a narrow range of
longitude and radius, and the magnetic ficld projected
on the plane of the sky {or magnetic radius of curvature,
or any other single rotating vector attached to the
magnetic structure) is approximately constant through-
out the exposure, instead of sweeping through a wide
range of angles. Therefore, if the polarization is fixed by
the magnetic structure alone, one expecis 2 Narrow pulse
with an approximately fixed position angle through the
wave form.

In rare special cases (@~ 7/2), the observer's line of
sight remains tangent to B at all ». Since the beaming
direction changes drastically with respect to the dipole
axis at radii less than 28R, the result would be a single
large duty cycle wave form. A few pulsars do have wave
forms of width greater than ~70°, which have previ-
ously been interpreted as possibly due to radiation from
the dipolar region but with small inclination angle f.
Low altitude emission from strongly oblique but dis-
torted fields provides an alternative geometric interpre-
tation of these rare objects.

We point out that if low altitude emission from
distorted peometries is relevant, then the emission of
coherent radiation must be broad-band at each height,
and cannot exhibit a radius to frequency map, for, if
Av <y at each height and a7 /2, the emission would
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be seen as a single spectral line because of the change of
basic beaming direction with height, in contrast to the
essentially constant beaming direction in the dipolar
zone. Since the actual spectra are broad-band, the emis-
sion in such low altitude models must be lacally broad-
band. The same requirement exists for the a~ /2 case,
since in no known example has strong spectral variation
been observed as a function of longitude,

No observational or theoretical constraint presently
known forbids broad-band emission. For example, if
emission occurs only at one radius, local density and
velocity gradients may give rise to widths which vary as
a function of frequency even if the emission is narrow-
band at each point in space. Thus widths which become
narrower at high frequency may be duc to gradients
along, the B-field (radivs to frequency maps) or gradi-
ents across the B-field (single radius emission). The only
constraint on the latter model is that the emission must
be truly broad-band in each emitting element of plasma,
or, if it is locally narrow-band, the angular width of the
emission zone must be small compared to the longitude
resolution of spectral observations.

We also point out that even if radius to frequency
maps exist, surface multipoles are unlikely to explain the
transition in the pulse separation versus frequency W(»)
curve. In many pulsars W{#)o»™?, where a ~0.2, for »
less than ~1 GHz and a~0 for »>1 GHz (sce
Manchester and Taylor 1977; Bartel, Sieber, and
Graham 1980 for summaries). As described above, the
gross curvature of the flux tube at low altitude in
general geometries will either present frequency depen-
dence on longitude (not observed) or interpulse and/or
large duty cycles if broad-band emission occurs. If the
dipole and multipole axes are aligned, as in the *normal”
pole of Appendix A, the problem of frequency shift with
longitude is avoided since the tube does not bend.
However, the W(r} versus » curves cannot be explained
by appealing to higher multipoles. This can be il-
lustrated as follows: Suppose narrow-band emission oc-
curs at a local frequency » & #°, where » is the particle
density (=e™ density in pair production models). As-
sume the plasma is uniform across B, and the plasma
all streams .outward relativistically along B, as in
the bunched coherent curvature radiation models of
Ruderman and Sutherland (1975) and of Benford and
Buschauer (1977). Then n /B =constant or » c« B, For
a pure multipole field of order /, this yields » cc "1,
with /=1 for a dipole, /=2 for a quadrupole, etc. Since
the flow zone is a flux tube, conservation of magnetic
flux implies that the opening angle of a flux tube is
proportional to r~'B~!'/?ac¢!/? for a pure multipole.
Then » @ W~ *1+2/04 where W =full width of the radia-
ted beam, or Wecp~ /M4 In the models referred to
above, for example, a =4 since the radiated frequency is
proportional to the local plasma frequency. However, in
general, increasing the magnetic gradient (/> 1) makes
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W a steeper, not a flatter, function of », contrary to
most of the existing data.

Since the plasma streaming model has a number of
restrictive assumptions, we think the more general argu-
ment comes from the fact that low altinde flux tubes
have nondipolar bends, as well as nondipolar gradients,
and that the change in the W{»} function observed at
high frequency is a consequence of changes in the radia-
tive or refractive properties of the medium. Resolution
of this issue requires a better ability to relate spectra and
pulse shapes [from either low altitude (r<<28R,) or
moderate altitude (2BR,<r-<R,) regions] to the
plasma conditions in these zones.

We therefore conclude that the observational identifi-
cation of low altitude complexity in the magnetic field is
hard to do from the radio data above; soft X-ray
absorption would be much more direct. However, pulse
components which do not show polarization sweep may
be good candidates for such emission, and should be
studied for other differences from more commonly
observed components for clues to the physical dif-
ferences between emission zones. The possibly observa-
ble effects of low altitude complexity on the P-P
diagram have been explored in § IV above,

VI. CONCLUSIONS

The main conclusions are the following:

I. Neutron stars with steady-state space charge
limited flow in electron zones and with magnetic geome-
tries including a dipole and quadrupole component will
produce copious pairs, provided they satisfy the pair
production threshold, equation (13). This can account
for all pulsars if the ratio R, /R or R;/R, are propor-
tional to a small power in P or P (as in § IVa),
indicating physically small systematic departures of the
outer magnetosphere from that of a vacuum rotator. We
also note that a qualitative difference from the pure
dipole field case occurs when i =0, where particle accel-
eration can exist il sufficient low altitude acceleration in
the nondipole zone oceurs.

2. The inclusion of torque decay in the simplest
scenarios worsens the agreement of the cutoff line with
the observed distribution, requiring larger departures in
the outer magnetosphere from the vacuum rotator re-
sult. However, if alignment occurs, it is likely that pair
production cessation does not directly account for the
cutoff line; instead, luminosity evolution (Manchester,
private communication) or another physical cutoff crite-
Hon is required. If luminosity evolution occurs with
torque decay, then faint (and thus difficult to detect)
pulsars would be expected in the lower right edge of the
diagram.

3. Observational effects of the higher order fields
may be difficult to detect directly, but in some cases
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they may account for interpulses or long duty cycles,
and should have identifiable polarization patterns. The
flattening at high frequency of the observed relation
between pulse width and frequency, however, cannot be
easily accounted for by appealing to higher order multi-
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pole components.

APPENDIX A

ALIGNED QUADRUPOLE AND DIPOLE AXES

When i, =0, the magnetic field structure is axisymmetric. Then B= ¥ X(Aey), where e, is the unit vector in the
toroidal direction with respect to the magnetic axis. The quantity 27r sin 0A4(r, §) is the magnetic flux passing through
a circle of radius r sin # centered on the magnetic axis and passing through the point (7, ), and so r sin #4 = constant
along a field line. In this geometry

cosf 1. (3cos*f—1 :
B,:BD[ . +;/3(—-—4—-l] (A1}
x 2 X .
and
sin fl cos fsinf
B,,=BD( s ) | | (A2)
2x x

where x =r/R,, # =magnetic colatitude, and B = By /By is the ratio of polar magnetic field strengths. Then:

: B, Rcosfsind ~
A=BpRy szm? +-2 k (A3)
2

1172
}. (A4)

P N 4_ ' 2
?‘_(3) =%(1+ﬁc053*)_l{ S?m U i[( sin # ) +4(1+Bcosﬂ*)ﬁcosﬂ(§§%)

2x°

From the constancy of flux along a field line we find:

R, sin” 9* sin H*

Figure 8 shows the global structure of this magnetic field. As can be seen from the fipure, in the region where the
dipole field merges with the quadrupole field of opposite polarity, the radius of curvature can be small [p(r=R,)~
BR,/2 when f=1} In this case, the “polar flux tube” is a thin cylindrical shell at altitudes below the neutral point,
r/R.<fB,m/2< cos™! (—1/B) =8 = =. The polar boundary of this acceleration zone is located along the flux surface

Fic. 8.—Aligned dipole and guadrupole. The global Held line structure of an aligned {igp=0) ynadrupole and dipole with g=1, as
represented by eq. (A4).
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f,=cos' (—1/8). Field lines lying close to this boundary are described by:

RLm—,G cos8+(B2—1)**A8, cot?4, (AS5)

£
where
Af,=0,—cos™' (—1/B). (A6)

Tracing the field lines back to R, with the field approximately dipolar for r>» R, pives an angular width of the

acceleration zone:
__ B (REVR,
Ad, (g 1)3/2 ( " R, )" (A7)

Because the “polar” flux is concentrated in a belt rather than a tube, the smallest dimension is
~R (R 2/c)YR,./R,), much smaller than the size typical of standard polar cap models {where Af.~
(Ruf2/¢)/*(R /R )1 .

The electric potential in this geometry is not given by (9). Instead a one-dimensional approximation is appropriate at
r<fR,. Consider a point on the flux surface #,=cos™' (—1/8)=40,, at a distance s along the field line from the
stellar surface. Erect a normal to this surface pointing into the acceleration zone. Let x =the distance along this
normal. Then:

O —2a[n(0,=0,,5) = (0, =8,,5)| (x> — xx00). (A8)

We find x and x_,, by using (AS5) to note that an increment in magnetic colatitude §A8, across the open [lux lines
corresponds to an increment in radius, Ar, such that

Ar=R,(B*—1)Y" 548, cot®8, (A9)
while from flux conservation,
x=ByAr/B. (A10)
The quantity x,, is obtained by setting A8, equal to Af, of (A7). We consider only the case { =0. Although this case
has unfavorably curved field lines for r > 8R,, it illustrates the potential drops available in the near region.

Calculation of the charge density requires a knowledge of the component of B parallel to §,. In the low-altitude
acceleration region where r=~— R, 8 cos # we find:

— 0B, [ (B2—1)"? sinf | 1 sin®8
= +— : All
TTIRT e B’ cos’d B cos’d (A1)
Use of (A11), (Al10), and (A9) calculated at the center of the flow region A, = Af, , in (A8) yields
2 /2 4 3
] (RQ)S(R,_)S —(B*—=1)"" cos?f# , Blcos’ 8]
O=—B R, — = + . Al2
4707 e ]\ Ry B s’ f  sin’f (A12)

In order to find the optical depth, we adopt the “on the spot” approximation, in which the magnitude of B is
assumed constant along, the ray between emission and absorption points, and the pitch angle of the photon is ¥ =//p
where / is the length traveled by the photon (AS). Then

_ooss’e 2\ 5 exp | =8 B me®
r=0.086 ( ) o exp( 5% . (A13)

E

X\ B

q

2
m,c
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The optical depth 7 is then maximized when ¥ has the maximum value possible achieved just as a photon leaves the
acceleration zone. Then W, ~( Xy« /p)l/ 2, and with g=~g_ and @ given by (A12) we find the maximum  as a function
of # (and implicitly as a function of emission altitude),

B R N R*Q 272 R, \"*/|eos %2 g -1 |
= 39 b -~9/2 L eosvy —
Toax(8)=1.5X10 (44}(]011(}) (wkm)ﬁ ( . ) (R,.) nd) Bleos 8|~ “pag

R.Q\—19/2 13,2
X exp —8.13x10“1837/2( : ) (—R")
c R,

4.4x10‘1)“( IOkm) sin 0 o os)~ g2-1)""
By R, |cos &) 7/? Bsind '

(Al14)

For fixed 8, we maximize 7, (f) with respect to §. This maximum exists since at the surface, where B is strong and p
is small, @ is small and therefore the photon energy ¢ is small, yielding a small Tmaxs while at higher altitude the neutral
point at r=fR,, # ==, is approached so that B can be weak and © may again be small, depeudmg on whether the
field lines are favorably curved. The maximum of 7,,,, occurs as

FE'JT;-—S =1 3(B l)ifl]
# > E Iz (A15)

which yields:

5 27/3 ] N
B Ry \¥/? R, \"
= -3 D 1/2p-212( 2L
('rmu,c)mux 743X10 (4.4)(10"26) (IOkm) B/-P (RA) v

B —4 10 km B/2 L LR 13/2
_2'23X10]U(44x1%‘16) ( R | ARTPR) [ w9

Xexp

where » =& /¢, (typically £, the mean photon energy that is absorbed at 71, is ~2g,).
For sufficiently small P, {7 ) e = 1, Indicating copicus pair production. We find the maximum peried by setting
(Tmax Jmax = 1 and solve for the period to find

BD 8/19 R* 23/19 0 n A J2/19
— s /19,219 Al7
P 0'“(4.411’0) (IOkm) BT [373] (A17)
with
0.11s R, \/2 B 'R\ T8
];uA—1823+]n( ) “/2( ) ( L ) —+£ ) Al8
P )F 10 km 44X10%G /[ \ R, (A18)

Clearly for 1< <10 (the range where the model is self-consistent and where p is interestingly small}, Pm‘ <0.4 5 for
all reasonable values of By and R,. Thus, the axisymmetric model does not yield a sufficiently large maximum period
for pair creation, in spite of small radius of curvature. The reason for this failure is twofold. The geometry of the thin
strip for the acceleration zone, instead of a more or less round tube, reduces the potential by a factor ~(R,8/c)'/?
compared to the dipole potential. Second, as r approaches SR, the geometry is not so thin, but the field line curvature
is no longer favorable and the presence of the nentral point in B reduces the opacity, since | B| is smaller. The main
point of this axisymmetric model is to show that short radius of curvature alone will not guarantee pair formation,

since the potential is also affected and since maintenance of consistently favorable curvature does not always oceur.
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APPENDIX B

ANALYTIC SOLUTION FOR FIELD LINES FOR x siny > 8

B 3Bcos [2(p—igp)]+1
Br=;?{cos4l+ @ [(4x igo)] ]» (B1)
n=T (s, B et } (82)
If x siny > 3, then
dx  |2cosy 3 cos [2(y —igp)] +1 Bsin (29 —2ig))
me[ siny +B{ 2xsinqy 1- xsing . (B3)

Keeping terms of order x and 1, eliminating terms of order 1/x yields

&x_aweosy [3cos (29 —2igp)+1]  2sin (24 —2igp) cos
dy~  siny 4 sin sin? )

Let

B _ [3cos(29—2ig5)+1  2sin(29—2ip,) cosd
f(llb)_zco':‘lb and g(‘!’)"ﬁ[ 4Sinlp - Siﬂzl’[l .

Then the solution of the linear first order differential equation is:

c=exp| ') av'| fs0) exp [~ [10) aw| o | [ 190 ],

where C is an integration constant.
Performing the integrations yiclds;

5Cl—1)005¢+( 1~~-c,)1

szsi.uth-i-Bsinl‘P[( 4 sty 4 Lty

sinyg  siny

1 5
S‘(asm%p sintﬁ)]'

Here, C = cos 2ipp and S, =sin 2i, . Thus, the two field lines which pass through the point x = c/R,8, ¥ = = 7 /2,

are given by:
1 5
S'(asm%p sinsb)n' (54)

This solution approaches the form x =(¢/R,£) sin’ ¢ + f cos § for i 5, =0, which is also the asymptotic form for the
exact analytic solution {eq. [A4]) in the limit of large x.

2] € 14 5C;=11\ cosy 1-C I—cos
x~sm¢{R*ﬂm35Sl+B[( 3 )Sin1¢+( n )111‘ sy
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