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Abstract

Parametric study of the current limit within a single driver-scale
transport beam line of an induction Linac for Heavy lon Fusion
by
Lionel Robert Prost
Doctor of Philosophy in Nuclear Engineering
University of California, Berkeley

Professor Edward C. Morse, Chair

The High Current Experiment (HCX) at Lawrence Berkeley
National Laboratory is part of the US program that explores heavy-ion
beam as the driver option for fusion energy production in an Inertial
Fusion Energy (IFE) plant. The HCX is a beam transport experiment
at a scale representative of the low-energy end of an induction linear
accelerator driver. The primary mission of this experiment is to

investigate aperture fill factors acceptable for the transport of space-

" This work was performed under the auspices of the U.S Department of Energy by University of
California, Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts No. W-

7405-Eng-48 and DE-AC03-76SF00098



charge-dominated heavy-ion beams at high intensity (line charge
density ~0.2 uC/m) over long pulse durations (4 us) in alternating
gradient focusing lattices of electrostatic or magnetic quadrupoles.
This experiment is testing transport issues resulting from nonlinear
space-charge effects and collective modes, beam centroid alignment
and steering, envelope matching, image charges and focusing field
nonlinearities, halo and, electron and gas cloud effects.

We present the results for a coasting 1 MeV K* ion beam
transported  through  ten  electrostatic  quadrupoles. The
measurements cover two different fill factor studies (60% and 80% of
the clear aperture radius) for which the transverse phase-space of the
beam was characterized in detail, along with beam energy
measurements and the first halo measurements. Electrostatic
quadrupole transport at high beam fill factor (=80%) is achieved with
acceptable emittance growth and beam loss. We achieved good
envelope control, and re-matching may only be needed every ten
lattice periods (at 80% fill factor) in a longer lattice of similar design.
We also show that understanding and controlling the time

dependence of the envelope parameters is critical to achieving high



fill factors, notably because of the injector and matching section

dynamics.

Professor Edward C. Morse

Dissertation Committee Chair
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Chapter | - Introduction

With the world population growing, the many developing countries
entering the industrialization process and the increasing needs for electrical
power from developed countries, providing enough energy to the world for the
years to come has become a concern. The depletion of global fossil fuel reserves
and environmental issues associated with their use (e.g.: greenhouse effect,
global warming), the inefficiency of renewable sources of energy (e.g.: solar,
wind), and the radioactive waste management and proliferation problems of
nuclear fission power plants make nuclear fusion the premier choice for

producing safe and clean energy [1,2,3].

.1 - Fusion principle

Fusion is the process of combining light nuclei such as isotopes of
hydrogen to form heavier ones [4]. As a result, a large amount of energy is
released and carried away by the product particles. In order to overcome the
Coulomb forces between the nuclei, the fuel must be heated to approximately

108 K or about 10 keV, which forms a plasma. The reaction rate is proportional to

the reaction rate parameter, (av), which is the product of the cross section o

and velocity v averaged over a Maxwellian velocity distribution. Because it has
the largest peak rate parameter in the range of attainable temperature [5], the
most common reaction usually considered is the fusion of deuterium and tritium

(Figure I-1),



D+T— *‘He (3.5MeV)+n (14.1MeV), (Eq. I-1)

which produces an alpha particle and a neutron.

Deuterlum-Tritlum Fusion Reaction

Deuterium 8

EMERGY MULTIPLICATION
About 450:1

Figure I-1: D-T fusion reaction.

The neutron has a long range and is used to heat a coolant that will eventually
lead to electricity generation and the alpha particle provides heat to the
remaining of the fuel and contributes to sustaining the fusion reaction. If we

define the burnup fraction, f,as n=n,(1- f), where n, is the initial fuel density,

we can obtain, for an equal mixture of deuterium and tritium

L_<‘7v> ]
T e (Eq. 1-2)



where 7 is the burnup time. From (Eq. I-2), typically referred to as the Lawson

Criterion [6], we see that the burn fraction increases with the n,z product (i.e.

confinement). The two approaches for fusion try to maximize one term or the
other in the product. In magnetic confinement fusion, the plasma density is rather
low but the burnup time is expected to be on the order of several seconds or
minutes. In inertial confinement fusion, the very short reaction time is
compensated by the large density that results from compressing the fuel.

In magnetic fusion energy (MFE) [7,8], a burning plasma is confined using
strong magnetic fields, which are created by external coils as well as electric
currents flowing in the fusion plasma itself. The most advanced concept relies on
a toroidally shaped fusion reactor (tokamak) such as shown in the conceptual
drawing of ITER (“The way” in Latin) (Figure 1-2), the largest such device to be

built in the near future [9].



Figure I-2: ITER conceptual drawing [9]. Note the person at the bottom for scale.

ITER will be the first fusion device to produce thermal energy at the level of an
electricity-producing power station.

In Inertial Fusion Energy (IFE) [10,11], a small pellet (a few millimeters in
diameter) of DT fuel (a few milligrams) is compressed to very high densities by
heating it with a laser or ion beam (i.e. the driver). During compression, a hot
spot at the center reaches the required 5-10 keV for the fusion reaction to occur

which ignites the fuel. Then, the alpha patrticles produced in the reaction heat up



the fuel surrounding the hot spot enabling the fusion burn wave to propagate
outward. During radial compression, the inertia of the fuel overcomes the
outward pressure due to the rapid increase in density. Once compressed and
heated to a plasma state, the fuel mass limits its own disassembly until a
significant fraction has undergone the reaction. By igniting pellets several times
per second, sufficient fusion energy can be released for commercial electricity
production. The National Ignition Facility (NIF), the largest laser system in the
world, is in the final stage of construction. Its mission is to achieve controlled
ignition at the laboratory scale, the proof of principle that inertial fusion can meet

the energy balance requirements [12].

.2 - Inertial Fusion Energy (IFE) power plant concept

An inertial confinement fusion power plant is shown schematically in
Figure |-3. It consists of a driver, a target factory a fusion chamber and a steam

plant.



Target Factory
To produce many low cost targets

Driver Q

To heat and compress the !
target to fusion ignition :
[\

Fusion Chamber

To recover the fusion energy
pulses from the targets
many focusing
beams element

Steam Plant
To convert fusion heat into electricity

Figure I-3: Simplified schematic of an IFE power plant.

For the concept to be viable, a simple fusion reactor power balance analysis [13]

shows that

f,,ﬂrhGﬂD =1, (Eq. I-3)

where, f, is the fraction of the generated electricity recycled to the driver, 7,, is
the conventional steam cycle efficiency, G is the target gain (i.e. the ratio of the
yield to the required driver energy) and 7, is the driver efficiency. Assuming
f,= 025 n, = 04, we find that the effectiveness of the driver-target
combination, Gr7,, should be at least 10. Since the efficiency of the driver is

typically less than 25% (laser or ion beam), the target gain must be =50 or more

and is determined by the physics of the compression [14,15].
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Inertial fusion micro-explosions can be driven directly or indirectly. In the direct
drive scenario, the laser or ion beams impinge onto the DT fuel itself and
compress it. In the indirect drive scenario, the DT fuel pellet is placed inside a

cylindrical casing referred to by its German term holraum (Figure 1-4) [16].

lon Beams — ___ - lon Beams
Converter
. 1 centimeter DT fuel pellet
materials

Figure I-4: Conceptual design of a hohlraum for heavy-ion driven IFE, showing a

DT fuel pellet inside a cylindrical casing lined with metal [16].

The role of the holraum is to convert the incident energy of the laser or particle
beam into a uniform x-ray radiation field inside the holraum, which then
compresses the fuel pellet. The indirect drive approach has the advantage that
spherically uniform compression can be achieved using only a limited number of
beams.

In contrast with MFE, the IFE concept has the advantage of decoupling
the driver from the reaction chamber. In this simpler geometry, the first wall can
be a liquid metal or molten salt, minimizing radiation damage to the reaction
chamber structural elements as well as a coolant collecting the energy released

from the fusion reaction [17].



1.3 - Heavy-lon Fusion (HIF)

1.3.1 - Generalities

As mentioned previously, the driver of an inertial power plant can either be
laser or particle beams and in case of ion beams, both light and heavy ions can
be used [18]. In the heavy ion inertial fusion concept, the DT target is driven by

beams of heavy ions with ion kinetic energy 3 < E < 10 GeV. Heavy lon

Bean
Fusion (HIF) has several advantages over laser driven fusion. First, the
accelerator technology, which was developed primarily for high energy physics
research has now reached an advanced stage of engineering maturity, resulting
in high reliability over long period of times. Additionally, accelerators have
relatively high efficiencies (= 30%) and repetition rates of several per second are
easily achievable, which have not been demonstrated for high-intensity lasers.
On the other hand, charged particle beams are more difficult to focus than lasers,
especially at the large currents required in this application.

Since the final cost of electricity is greatly influenced by the efficiency of
the fusion reaction in the DT fuel, the target design sets the beam energy and
currents requirements for the driver as well as the spot size to be achieved. In
most target designs for HIF, the driver must be able to deliver 3-7 MJ in =10 ns.
For efficient conversion to x-rays, it is desirable that the incident ions deposit
their energy in a very short distance into the holraum converter materials. Typical
targets produce highest gain for incident ion ranges between 0.02 and 0.2 g cm™
[19]. Together with the power requirement, we then find that heavy ions

(mass = 200 amu) need to be accelerated to a few GeV for a total beam current
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of = 100 kA divided into 10 to 100 