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Abstract We will use Eg. 2 to advance the surface charge den-
sity o(z) to the future time level, and then compute the

The Pulse-Line lon Accelerator (PLIA) is a helical dis- . . i
tributed transmission line. A rising pulse applied to theadvanced-tlme electrostatic poteniidl, z), and thus the

upstream end appears as a moving spatial voltage ramp,%lﬁf:tric field E(r, 2) th_at is r_leeded _in the interior of the
which an ion pulse can be accelerated. This is a promiQ-e X 0 advancg the S|mulat|9n particles. .

ing approach to acceleration and longitudinal compression I IS now pOSSIbl(.-Z‘ o establish a corre;pondence with the
of an ion beam at high line charge density. In most of thf'rgu't model of [6]; assume (for_conver!lence) one compu-
studies carried outto date, using both a simple code for lofa.t0"al node per turn of the helix, that &z = s. Theo;
gitudinal beam dynamics and the Warp PIC code, a circu

model for the wave behavior was employed; in Warp, th
helix | and V are source terms in elliptic equations for E
and B. However, it appears possible to obtain improved ik
delity using a “sheath helix” model in the quasi-static imi Z CiiVi = O 3)
Here we describe an algorithmic approach that may be used — v

to effect such a solution. !

t each node can be integrated around the helix circum-
erence and over an axial intenAl: to yield a charge);.

hen, those charges are related to the voltages on the set of
odes by the mutual capacitances:

In the simplest model, the only nonzero elementgpf
THE MODEL were the diagonal entries. Here we may precompute the
capacitance matrix’;; and, at each time step, invert it to
In this note we present an algorithm for solving for thepptain the advanced-time voltages after we have computed
fields in a PLIA [1, 2, 3, 4, 5], via an “almost first prin- the source terms via Eq. 2. In the circuit model, the capaci-
ciples” model [1] which accounts for mutual capacitancegance between each helix turn and the grounded outer pipe
and inductances and can capture end effects, transformgjith dielectric in between) plays a major role. Sinee
coupling, and dispersion. This is an intermediate level adnly establishes the jumps ifi. and not the actual poten-
description, between a simple circuit model [6] and a fultja| values, the outer-wall boundary condition in the Pois-
electromagnetic field computation [7]. Field detail nea&r thson solution used to establigl; serves to set the capaci-
helix wires is not captured, but for beam simulation purtgnces to ground;);.
poses it is not generally needed. Other recent PLIA re- For the purposes of a 1-D circuit model, knowledge of
search is also described the2mceedings [8, 9] and else-  the capacitance matrix suffices. However, to advance the
where [10]. particles in ar(r, z) or 3-D simulation it is necessary to ob-
In the axisymmetric limit, charge continuity requires:  tain the electric field structure, and so (rather than usieg t
Nz 1) 1(2,1) capacitance matrix) a Poisson solution may be carried out
- LA (1) ateach step, including the beam charge as a source term.
ot 9z The helix voltageV/ (z, t) is related to the changing ax-
where(z, t) is the charge per unit axial length. The helixial magnetic flux through the helix. Taking a path of inte-
currentl(z,t) can be thought of as charge per unit timedration in Faraday’s law that passes inside the helix wire,
passing through a cross-sectional plane cut across the wiéending axially by a distanc@z, the flux®(z, ?) is en-
itself, or (equivalently) through a plane cut across thexhel circled Az /s times; the corresponding voltage change is:
and normal to its major axis. Denoting the helix radius by Az O
a and the wire center-to-center spacing Hythe surface AV = ———®(z,t), 4)
charge density on the helix sheet [Coul]iis o = \/27a,
the azimuthal sheet currenti§y = I/s [Coul/m/s], and Where thetotal flux through the helix (due to its own cur-
the axial sheet current i&, = I/2ma [Coul/m/s]. Eq. 1 rentand that of any driving “primary” winding) is:
can be rewritten as:

a
P(z,t) = B t)2mrdr . 5
BU(Z,t) o aKZ(Z7t) (2) (Z’ ) A Z(T7 Z’ ) o " ( )
ot 0z In the continuum limit,
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ot 0z



It is the magnetic fieldB(r, z,t), not the flux, that is de- I; is not the total current flowing azimuthally in computa-
sired at the advanced time, and initially it was not cleat thdional zonej on the helix, ands insensitive to zone size
the flux (a scalar function of) contains sufficient informa- when sufficiently small zones are employed. To avoid con-
tion to uniquely specifyB(r, z,t) (a vector function of-  fusion on this point, we rewrite Eq. 8 as:

andz). A key realization was that a set &f fluxes can

uniquely specify a set oN current sources (correspond- 27mz MK, ;=—-%;, 9)
ing to V turns of the helix, wher\z = s), and then those j
sources can be used to comple-, z, t).

The azimuthal magnetic field componetity(r, 2), is AN ALGORITHM

neglected; as seen in direct solutions of the Maxwell equa-

tions [7], it is small near the beam. Thus the current

sources are assumed purely azimuthal (circular hoopé t Tk')rll_ehalgotrlfthm fr? ntS'StS of %pcrje(jcqmptl:;[at:p n phg\se to
at each computational node on the helix, the source ablish matrices that are needed during the ime-adyvance

and a series of actions at each computational time step, to
Ko(z,t)0z = (2ma/s)K(2, )0z = I(z,t) Az /s advance the system through an inte?xhal Denoting theIO
time level (abbreviated “tl") of a quantity by a superscript
the step is described herein as an advance of the system
from tl 0 to tl 1. The sheet currenk’, is advanced from
dK. Az dl; tl 1/2 to tl 3/2; it can be obtained at il by interpolation
Azz Mijd—te s Z Mijd—tj =Vipa =Vi. (7) foréliagnosti/cs or magnetic field computation. The overall
Y Y procedure is formally a “leap-frog” advance, and is “time
centered,” reversible, and second-order accurate. At star
up, the current in the helix may be assumed to be zero, or a
half-step may be taken to obtain valuegof at tl 1 /2.
Pre-computation: If only the voltages and currents on

Many variations are available; we outline one possibil-

To make correspondence with the above-mentioned ¢
cuit model, the voltage change from node nodei + 1 is
related to the currents at the nodes by:

In the circuit model/; is the current flowing between “volt-
age” nodeg andi + 1. It is desirable to avoid two-cell
difference expressions such®s.; — V;_;1. The Yee dis-

cretization of finite-difference time-domain electromatgn . ) . 2=
ics [11] employs “staggered” grids fdt and B, so as to the h_e“X are desired (gn |mprove(_j C_II’CUIt mode_l), precom-
preserve important properties of the continuum equationgyt";tlor1 (gl th_e capamt;’;m;e mat:rlx IS dagpéop“i'tef it mgyl
Thus, we “offset” the axial locations of the currents from € desirable Ih general. Anh enhanced 1-L particie mode
those of the voltages by half a cell. By examination of th@1Ight use applied f|(_alds computed via a_separately precom-
governing equations, the “centering” of all other quaeiti puted Green’s function that relates a unit voltage on the he-
can be developed S,ee Fig. 1 lix at z = 2, to a voltage patteriy (z — z() averaged over

' o a nominal beam cross-section. Beam self forces might be

L.K. . modeled using a simpledA/dz" formulation, or (better)
Vi, o e Vii1s Gia yet another precomputed Green’s function averaging across
L * —> a nominal beam cross-section for both the charge-density
R;, @; z and the force on a “slice” as a function of In all cases,

the mutual inductances of Eq. 9 should be pre-computed.
Figure 1: Discretization, showing computational nodes.  Time advance:Enter the time step with defined at th
and K. defined at tll /2.
When Az = s, Eq. 7 describes the usual mutual-(a) Advancer using the continuity equation:
inductance relationship. Most of our work with the cir-
cuit model used the simpler local self-inductance coupling (o} — 0?)/At = —(Ki,/f - Ki,/f_l)/Az : (10)
L; = —Mj;;. For any node spacing, equations 6 and 7 are
equivalent (in a finite-difference sense) when: (b) For the simplest case of an improved circuit model, it
suffices to associate charg@s = o; Az with each node,
Z Mi;I; = —®; , (8) and solve Eq. 3 for thé&; values. For the full simulation
J case, the surface charge induces a jump,irat the helix:

which is a familiar formula for mutual inductances [12]. In Op(r, z) APt (r, 2) 4

practice, theM;; are pre-computed by setting to unity "' { or L_ﬁ_ in [ or ]T_a =0 (2),

for eachj in turn, with the other currents zero, computing (11)

B(r, z), and measuring the fluxds, at all axial nodes. wheree is the dielectric constant, and “out” and “in” denote
The model does not requirkz = s. To allow arbitrary r > a andr < a. There are multiple possibilities:

zoning in the simulation code, we interpret the mutual ini) One could solve coupled Laplace equations with this

ductances as coupling the magnetic fluxes through the tguimp in the gradient ob as a constraint. This is not simply

associated with the individual computational zones with tha matter of solving two Laplace equations with Neumann

currents in those zones. Note that we assodiateith the  boundary conditions at the helix in the inner and outer re-

current flowing in the helix wire through the plane= z;.  gions, since only the jump ifi¢/0r is known in advance.



The additional constraint to be imposed is thét) take on The “drive” can enter in any of several ways:

the same values in the two subdomains. (i) If it is a current source, it replaces step (e) at node 1
(i) Alternatively, we may “smear” the surface charge byusing the prescribed inpu, put (t).

defining a charge density in the computational cell at the (ii) Ifitis a voltage source, it enters as an internal bound-
radius of the helix ap = o/Ar, then solve a Poisson ary condition in the Poisson solution of step (b).

equation (including source terms from helix charge, beam (iii) If it is via a transformer primary, itself driven by a
particles, stray electrons, and any other sources): current source, it becomes an extra “node 0” in the mutual

. . inductance matrix.
V- (Vo) = —p', (12

where the “stencil” for cells with radial indéxcorrespond- DISCUSSION

ing to the helix radius might be: The equations presented herein define a detailed one-

Cout(Bhyr — OL) — (Pl — BL_1) <82¢ ol dimensional model of wave propagation on the helix that

N 72 )= A can be coupled with a one-dimensional particle-in-cell
" z (r ) model. The simplicity of such a model is attractive for de-
For an infinitesimally thin sheet, the?¢,/922 term is not velopment of insight and for rapid scoping studies; indeed,
needed since all variations are "‘slow” in comparison to the simpler circuit model presented earlier lent valuafle i
jump in the radial electric field; but for a finite-thicknessSlght Into th_e behavior of this novgl system.
The circuit model from that earlier note was adapted for

layer it is appropriate to include it. . . . )
(c) From the solutiom! (r, z) to the Poisson equation, the Y€ '" Warp, which allows muiti-dimensional (2-D and 3-
D) particle-in-cell simulations to be carried out, incladi

electric fieldE* (r, z) can be obtained via finite differences, 'detailed space charge fields. Since an improved model is

and the voltage¥! (») at the computational nodes on thed d for d d | tudi h ¢ |
helix obtained as the corresponding values bf esired for design and analysis studies, we hope 10 imple-
ment this improved field model in Warp.

(d) Time-advance the magnetic flux through each helil’
node: using a finite-difference form of Eq. 6:
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(e) Obtain currents at the helix nodes from the magnetiith J-L. Vay and S. S Yu.
fluxes by inverting the inductance matrix, Eq. 9.

(@Y% —@%)/(At) = —s(Vihy — VY /Az.  (14)

(d€) Note that steps (d) and (e) may be combined, and REFERENCES
mtroducyon_ of the mt_ermedlary flux _quanutlézsavmded, [1] R.J. Briggs, “Pulse line ion accelerator concept,” PRET
by substituting Eq. 9 into Eq. 14 to yield: 9, 060401 (2006).

Az 271a 3/2 1/2 [2] R.J. Briggs.et al., Proc. 2005 Part. Accel. Conf.

s At Z Miy(KZ7 - Kj) = (Vi = Vi), (15) [3] A. Friedmanet al., Proc. 2005 Part. Accel. Conf.

[4] G. Caporasoet al., Proc. 2005 Part. Accel. Conf.

where the sum involving th&>/? is to be segregated into [°] W- Waldron,et al., Proc. 2005 Part. Accel. Conf.

the left member and the matrix inverted. This is a densd®] A Friedman, “Studies of the Pulse-Line Accelerator Us-

matrix, with diminishing elements away from the diagonal. N9 & Circuit Model,” available as LLNL Report UCRL-TR-
This approach is especially attractive when the helix is 210492 (2005) or LBNL Report LBNL-58938 (2005).

terminated in a helical resistive line, so that the voltagel”] S- D- Nelsonetal., Proc. 2005 Part. Accel. Conf.

drop per unit length has both inductive and resistive con{8] W. L Waldron, et al., “Studies of the Pulse Line lon Accel-

tributions in series (since the current in the inductor égua  €rator” thes@roceedings.

that in the resistor). The voltage drop between naded [9] E. Henestroza_,et al., “Electromagnetic Simulat_ions of

andi separated by a helix segment with a resistance per LBNL Pulse Line lon Accelerator (PLIA) Experiments,”

unit lengthR; has two contributions: theseI.Droceedlngs. ) )
[10] A. Friedman, “A Scaled Helix for Breakdown Studies,”

Az 27a Z My (K /2 K'/?) LLNL Report UCRL-TR-224518-REV-1 (2006).
s is K. [11] K.S. Yee,EEE Trans. Antennas Prop. 14, 302-307 (1966).

(16) [12] R. P. Feynman, R. B. Leighton, and M. L. Sand$e

(Kg/z? + Kl/-Q) Feynman Lectures on Physics, p. 17-9 ff., Addison-Wesley,

z, ) 1
+27WAZR1'—2 (Vi = Vi) Reading, MA, 1964.
(terms |nK3/ are to be segregated into the left member).

(f) Use the resultings, ; as sources to obtaiB*(r, z)
or B3/2(r, z), if necessary (when electron orbits are being
computed, or for improved accuracy in ion orbits).



