
The WARP Code: Modeling High Intensity Ion Beams

David P. Grote, Alex Friedman

LLNL, Livermore, CA, USA

Jean-Luc Vay

LBNL, Berkeley, CA, USA

Irving Haber

University of Maryland, Collage Park, MD, USA

Abstract. The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity
ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an
accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell
model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded
conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced
dimensionality: an axisymmetric model and a transverse “slice” model. The code takes advantage of modern
programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the
use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of
diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of
Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked
against both theory and experiment. Recent results will be presented showing good agreement of Warp with
experimental results from the STS500 injector test stand. Additional information can be found on the web page
http://hif.lbl.gov/theory/WARP_summary.html.

INTRODUCTION

The Warp code was originally developed to model
the high current, high brightness beams that are
required heavy-ion driven inertial confinement fusion
(HIF).[1,2] HIF offers a path to fusion as an energy
source. It relies on having ion beams focused down
onto the small fusion target, driving it to ignition. In
order to provide the required energy, the ion beams
must be high current, but have low enough emittance
(or temperature) to be focusable. These beams are
“space-charge dominated” – the self-field effects are
significantly larger than the thermal effects. The
beams act as non-neutral plasmas. An ideal method to
simulate these beams is the particle-in-cell (PIC)

method from plasma physics. This method fills the
phase-space with representative particles and couples
them by solving Maxwell’s equation on a grid.

The Warp code begins with the PIC method and
extends it by incorporating a description of the applied
fields of the accelerator lattice. The PIC method is
implemented in axisymmetric mode, transverse slice
mode, and in full 3-D mode. Due to the relatively low
energy per nucleon of the beams in HIF, only an
electrostatic, Poisson, solver has been implemented.
The solver allows internal boundary conditions –
extensive tools have been developed for their
specification. The particle advance is 2nd order leap-
frog, and for the coupling to the grid, linear, or cloud-

55

http://dx.doi.org/10.1063/1.1893366

in-cell interpolation is done. Multi-species can be
modeled, such as multiple charge states and multiple
ions. For electrons, an advanced integrator is being
developed that allows large time-steps compared to the
electron cyclotron frequency.[3] The lattice
description allows a range of field descriptions, from
uniform, pure multipole components, to axially
varying, mixed components, to gridded field data.

The natural mode of operation of the PIC method
(and thus of Warp) is to be time-dependent, which is
well suited for the modeling of space-charge
dominated beams. A consequence is that the fields
from the lattice are applied directly to the particles,
rather than via mapping methods, as is usual in the
modeling of emittance dominated beams.

WARP OVERVIEW

Combined in Warp are many different pieces that
cover a wide variety of scenarios, covering various
dimensionality, levels of problem description, and
kinds of physics. All pieces of the code have been
adapted to run in parallel-processing environments.

Warp3D

The original package of Warp was the 3-D
package, which models the beam in full three-
dimensional physical space and three-dimensional
velocity space. The self-fields are calculated on a
Cartesian mesh laid down in the frame of the beam.
The mesh can move with the beam or remain static. In
a bend, warped-Cartesian coordinates are used, which
are cylindrical coordinates, with the angle theta
replacing the axial coordinate z. A single mesh can
contain areas with and without bends. In a bend, the
coordinate system follows a defined physical
centerline of the bend, which does not necessarily
coincide with the trajectories of any particles (which
depend only on applied and self fields). The
coordinates of the particles, however, are stored
relative to the warped coordinates – a particle which
does follow the bend centerline will have x = 0.

A number of field solvers (Poisson solvers) are
available. The first is an FFT based solver. Bends can
be included by moving the curvature related terms to
the right hand side, treating them as sources, and
iterating to convergence. Simple internal boundaries
can be included using the capacity matrix method. For
larger, more complicated conductors however, the
matrix becomes very large and is costly to generate.

For this reason, an iterative multigrid solver was
developed. This solver can include arbitrary internal
boundaries. At the internal boundaries, cut-cell or
embedded boundary conditions are used to maintain
second order convergence of the solver. Extensive
tools have been developed to specify the conductors,
allowing combinations of basic geometric objects,
such as cylinders and tori, and more complicated
objects, such as those describable as surfaces of
revolution. In bends, the curvature terms are directly
included in the iteration. An adaptive mesh refinement
(AMR) capability in three-dimensions is in
development. Two and four-fold transverse
symmetries can be taken advantage of for efficiency.

The basic time advance for the Warp3D is fully
time-dependent. Various approximations can be used
to gain efficiencies, however. For example, “quasi
time-dependence” can be used – the particle advance
is fully time-dependent, but the self-field calculation is
done only periodically. A further approximation is an
iterative steady-state mode, where a single bunch of
particles is tracked through the system, accumulating
the charge density. The self-fields are recalculated
with the accumulated density and the iteration
repeated. This is a standard method in many gun
codes. It can sometimes converge to a bi-stable state,
however. The quasi time-dependent does not suffer
from this problem.

WarpRZ

Beams can be modeled assuming axisymmetry –
variation along the azimuth is ignored. Warp actually
follows the particles in full 3-D space, but the charge
density is mapped to and the self-fields mapped from
the r-z plane. The Poisson solver uses the multigrid
method, and includes internal boundaries using the
same cut-cell methods as in the 3-D solver. The
adaptive mesh refinement methods in the RZ solver
are more developed.[4]

WarpXY

The third model implemented is a transverse slice
model which effectively models a steady flow. A thin
transverse slice of the beam is followed through the
lattice, ignoring any z-dependence of the self-fields.
Each time step, the particles are advanced to the same
z position - they all have the same z-step size. The
particles can have a variation in their axial velocity,
and z-dependent and z-directed applied fields are
included. Each particle has its own time-step size,
which is adjusted inversely to the axial velocity to

56

keep the z step size constant. Each step, as the axial
velocity changes, the advance is iterated to update the
time-step size of each particle. In bends, the slice
moves in steps of the angle theta around the bend -
particles at large x in the bend move further each step
(the time-step size is adjusted accordingly). There are
two Poisson solvers implemented, an FFT based solver
with optional capacity matrices, and a multigrid/AMR
based solver.

The Lattice

The lattice description is used to set the applied
fields and geometry of bends. The fields can be
specified at several levels of description. Any elements
can be overlapped. The lowest level is the axially
uniform, hard edge approximation. Any multipole
component can be applied, for example solenoid,
dipole, quadrupole, sextapole, etc. Accelerating fields
can be applied as well. When the fields are applied to
the particles, “residence corrections” are used, where,
upon entering or exiting the element, the applied field
is scaled by the fraction of the time-step spent inside
the element. With the corrections, 2nd order accuracy is
maintained in the advance.

The next level of description is to use axially
varying multipole components. The z variation of the
coefficients of the components is tabulated. Currently,
linear interpolation is done between data points. Any
component or combination of components can be
applied, including both fundamentals and their axial
derivatives. In a bend, the transverse center follows the
curvature.

A further detailed description is to use fully
tabulated field data. For magnetic fields, the three
components of the field are each specified in three-
dimensional Cartesian grids. For electric fields, the
potential is specified on a single three-dimensional
grid, and finite differences are done on a per particle
basis. In both cases, tri-linear interpolation is done
between grid points. As with the other descriptions, in
a bend, the grid follows the curvature.

For electrostatic elements, the fields can be applied
by directly including the conductors as boundary
conditions in the self-field calculation. For example,
with interdigitated electric quadrupoles, the geometry
as described via the lattice can be included. In a diode,
the voltage drop can be modeled by including the
anode and cathode plates.

The bend elements are different than the others
since they are only specifying geometry – no fields are

applied. For any elements that overlap a bend, the
center of the element follows the curvature. Currently,
Warp only supports bends in one plane, the z-x plane.
Also, note that two bends can overlap each other.
Figure 1 shows an example lattice that includes bends.

Figure 1: This shows an example lattice – a storage ring
experiment at MSU containing only 4 bends. The magnetic
field is gridded. The blue shows the extent of the bend. The
green shows where the gridded field is (though it is covered
over in the bend). The color scale is the By field component,
in Tesla.

Injection

A significant capability of Warp is its ability to
model particle injection. Fixed-current, space-charge
limited injection, and secondary emission can be
modeled. Injection from a plasma source, using the
standard approximation of electrons with the
Boltzmann distribution, is in development.[5] The
emission of particles can be from curved surfaces.
Some examples are shown in Figures 2, 3 and 4.

Unlike many gun codes that launch particles from a
virtual surface in front of the true emission surface,
Warp launches particles directly from the true
emission surface. This offers several advantages: for
sources immersed in a magnetic field, particles are
advanced correctly in that field from birth; for time-
dependent problems, particles can spend a significant
time traversing the virtual region in front of the source,
and in order to correctly model the head of the beam,
the detailed motion in that region must be captured. As
part of this, a capability was added to model this
region using one-dimensional mesh refinement along
lines normal to the emitting surface. The refinement is
non-linear, following the Child-Langmuir density
scaling. Refinement factors as high as 10,000 are used
regularly [4].

57

Figure 2: The extraction region of the VENUS ECR source.
The nearly vertical lines are evenly spaced contours of
constant potential.

Figure 3: The same region as shown in figure 2, but
rendered in 3-d.

Figure 4: From a multiple beamlet merging injector. This
shows the slice at y=0. Here, 119 beamlets are independently
injected and accelerated and then merged into a single beam
that flows into a transport channel.

The modeling of secondary emission of particles is
under development. With this capability, a simulation
can for example include emission of electrons when an

ion or electron strikes a surface. The motion of these
particles are tracked self-consistently.

Python interface
X (m)

The user interface to Warp is the modern scripting
language Python.[6] This is a fully object oriented
language that is well developed and is used
extensively throughout the world. While the core of
the code is written in modern Fortran, Python is the
interface for data input, steering, and post-processing.
Python gives the user great control over the problem
description and how the simulation is carried out. The
authors of Warp do not have to foresee all possible
modes of operation, diagnostics, post-processing, etc.
that the users may need. The users input file becomes
the “main” routine. Python also gives interactive
access, allowing such things as rapid problem setup
and debugging, and interactive experimentation to help
in aiding the understanding of the problem of interest.

Z (m)

CONCLUSIONS

Warp was originally developed to study the high-
current, high-brightness beams required for the HIF
approach to fusion energy. It was designed to be
flexible, including various degrees of approximation
and dimensionality. Warp should work well for ECR
ion sources. Complex conductor geometries can be
modeled and bends included. Multiple species can be
injected and followed. A plasma source model is in
development. This covers much of the capability
required for ECR source modeling. X (m)

REFERENCES

1. A. Friedman, D. P. Grote, I. Haber, “Three Dimensional
Particle Simulation of Heavy Ion Fusion Beams,” Phys.
Fluids B. 4, 2203 (1992)

2. D. P. Grote, A. Friedman, G. Craig, I. Haber, W. M.
Sharp, “Progress Toward Source-to-Target Simulations,”
Nulc. Instrum. Methods Phys. Res. A, 464, p. 563 (2001).

Z (m)

3. R. Cohen, et. al., “Electron-Cloud Simulation and
Theory for High-Current Heavy-Ion Beams,” to be
published in Phys. Rev. ST Accel. and Beams.

4. J. L. Vay, et. al., “Application of adaptive mesh
refinement to particle-in-cell simulations of plasmas and
beams,” Phys. Plasma 11, 2928 (2004)

5. http://ww.science.doe.gov/sbir/awards_abstracts/sbirsttr/
cycle22/phase1/024.htm

6. http://www.python.org

58

	WARP OVERVIEW
	Warp3D
	WarpRZ
	WarpXY
	The Lattice
	Injection
	Python interface

	CONCLUSIONS
	REFERENCES

	copyright:

