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1. Effects of lnitial Target Inhomogeneity



In hydrodynamic calculation on the WDM experiments,

B

foam targets are so far assumed to be homogeneous.

o/ kT-dependent Bragg curves:
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For detailed analysis, however, initial inhomogeneity (porous structure)
of the foam target should be taken into account.
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To simulate inhomogeneous porous foam targets, '

a 1D multilayer structure was applied.

Modeling of the inhomogeneous 3D porous structure for calculation with
a 1D hydrodynamic code (MULTI, ver. 7):

Averaged pore diameter D - Gap between slabs @L;ﬁ’g; iff(‘)i?:ps
Averaged cell wall thickness d = Slab (foil) thickness (p=102p,_ )
Solid
- SN e
— @ d | — ~ @
N
d D
Limitations of the analysis:
Homogenization by multidimensional mixing 5€
(instability) cannot be treated. ei
- Homogenization is underestimated! zé
Projectile effective charge is always at equilibrium. 92

- Only the upper limit of the effect is obtained.



Beam- and target parameters were adjusted so that
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the Bragg peak is located at the center of the target.

Beam- and target parameters:

Projectile: 23.1-MeV 23Na* (1.005 MeV/u), 4 GW/mm? (peak) X 1 ns
— Energy per pulse W =4 J/mmZ2 (1.7x1013 ions/mm?2)

Target: ,;Al-foam, p. .., = 0.1p,.4 9ross thickness = 61.7 um
= dE/d(px)-inhomogeneity = + 2.5%, if cold solid Al data are used.
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Macroscopic responses of the inhomogeneous (foam)

and the homogeneous target are similar each other.

Streak images of the density- and the temperature profiles:
Foam target (7 layers, D =9 um, d = 0.9 um):
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Inhomogeneity of the density is not smeared out T

even after gaps were filled with blow-off materials.

Snapshots of the density profile up to the end of the pulse duration:

Dense spots appear at the original position of pores (gaps) due to stagnation of
blow-off materials. (cf.  =1.5 ns).

"Macroscopic" rarefaction waves do not reach the central part, even at the end

of the pulse ( ), as in the case of the homogeneous equivalent.
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The inhomogeneity persists by the periodic exchange iy

between the kinetic and the thermal energy.

Snapshots of the temperature profile up to the end of the pulse duration:

"Hot spots" appear at the original position of pores by collisions of blow-off
materials from each foil[1]. (cf. = 1.5 ns)

Averaged temperature of the inhomogeneous target is always lower than
that of homogeneous equivalent.

Al foam target (6D =9 um, d = 0.9 um) Homogeneous equivalent (o = 0.144ig)
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[1] V. Eremov et al., Nucl. Instr. and Meth. A 577 (2007) 324.



Averaged "macroscopic” —dE/d(px) was evaluated
using the total energy loss through the target.

Effect of pore size was investigated by changing the gap between slabs:
The gross density was kept constant at p..... = 0.1p,,4-
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Macroscopic stopping power decreases with

increasing the pore size of the foam target.

Temporal evolution of the "macroscopic” stopping power as a function of

initial pore radius:

Before homogenization (t < = 1 ns), the energy deposition in the foam targets
are smaller than in the homogeneous target. - Low target temperature!

After homogenization at the end of pulse duration, energy loss by every target
is roughly equal.
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2. Effects of Projectile Energy Ramping




Due to the increase of —dE/d(px) with KT,
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the rear side of the target cannot effectively be heated.

Change of the Bragg curve with kT [x1077 10.0
for low-density Al target:

—dE/d(px) increases with kT at fixed p.

Energy-deposition and kT profile at the
end of the pulse duration:
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As compensation for the increased stopping, temporal
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ramping of the projectile incident energy was examined.

Waveform of the incident projectile
energy ramping:
Constant ramping during the pulse
duration (t = 0-2 ns)
e. g. History of the energy-deposition-
and projectile-energy profile for
(E;- E)/E =+30%
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By temporal ramping of the projectile incident energy, o

homogeneity of heating can be improved.

Projectile energy ramping during the pulse duration:

Compensation for increased stopping due to the target temperature rise
Energy-deposition and kT profile at the end of the pulse duration
for different ramping rate:

Optimum ramping rate =~ +30% 2> —dE/d(px) inhomogeneity = +20%
- kT inhomogeneity = +13%
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Energy (velocity) modulation - consistent with the beam bunching scheme?
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As an alternative, simple increase (without temporal e

change) of the incident projectile energy was tested.

The projectile energy was increased ' ' <
from the beginning of the pulse duration = 5
to secure a sufficient penetrability: s s
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Also simple increase of the incident projectile energy
can improve the homogeneity of heating.
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Energy-deposition and kT profile at the end of the pulse duration (t = 2 ns)

for different increment factor:

Comparable improvement is obtained, although the incident energy is constant

during the whole pulse duration.

Optimum increment factor ~ +30% -> —dE/d(px) inhomogeneity = +19%
- kT inhomogeneity = 15%
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No projectile-velocity modulation - compatible with the bunch compression!
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"Effects of Initial Target Inhomogeneity and -----

Conclusions:

Effects of initial target inhomogeneity analyzed by a 1D hydro code:

Initial inhomogeneity is not completely smeared out even after the gap (pore) is
filled with the blow-off materials. ( ----- overestimation of the effect?)
- Multi-dimensional calculations are needed for detailed analysis.

Before homogenization, the total energy deposition into the target is smaller
than expected for homogeneous equivalent.

"Macroscopic" mass stopping power decreases with the pore size.
- No effect is expected for small ( 1 um) pore sizes.

Effects of projectile-energy ramping:
Inhomogeneity of heating due to the range shortening can be reduced.

Similar effect is available also by simply increasing the incident energy,
without temporal ramping.

Methods Heating Bk y Tk i Cost
(Projectile energy) | homogeneity needed bunching
Temporal ramping @ @ ®
Simple increase
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