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1. Effects of Initial Target Inhomogeneity
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kT-dependent Bragg curves:

In hydrodynamic calculation on the WDM experiments,
foam targets are so far assumed to be homogeneous.
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Hydro motion of  a  = 0.1solid

 
"foam" target:
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For detailed analysis, however, initial inhomogeneity
 

(porous structure)
 of the foam target should be

 
taken into account.




 

Modeling of the inhomogeneous 3D porous structure for calculation with
 a 1D hydrodynamic code (MULTI, ver. 7):

▬
 

Averaged pore diameter D
 

 Gap between slabs
▬

 
Averaged cell wall thickness d

 
 Slab (foil) thickness


 

Limitations of the analysis:
▬

 
Homogenization by multidimensional mixing

 (instability) cannot be treated.
  Homogenization is underestimated!

▬
 

Projectile effective charge is always at equilibrium.
 Only the upper limit of the effect is obtained.

To simulate inhomogeneous porous foam targets,
a 1D multilayer structure was applied.
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Beam-
 

and target  parameters:
▬

 
Projectile: 23.1-MeV 23Na+

 

(1.005 MeV/u), 4 GW/mm2

 

(peak) × 1 ns
  Energy per pulse W = 4 J/mm2

 

(1.71013

 

ions/mm2)
▬

 
Target: 13

 

Al-foam, mean

 

= 0.1solid

 

, gross thickness = 61.7 m
 dE/d(x)-inhomogeneity

 
= 

 
2.5%, if cold solid Al data are used.

Beam-
 

and target parameters were adjusted so that
the Bragg peak is located at the center of the target. 
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Streak images of the density-
 

and the temperature profiles:
▬

 
Foam target (7 layers, D

 
= 9 m, d

 
= 0.9 m): 

▬
 

Homogeneous equivalent (0

 

= 0.1solid

 

):

Macroscopic responses of the inhomogeneous (foam)
and the homogeneous target are similar each other.
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Snapshots of the density profile up to the end of the pulse duration:
▬

 
Dense spots appear at the original position of pores (gaps) due to stagnation of

 blow-off materials.
 

(cf. t
 

=1.5 ns).
▬

 
"Macroscopic" rarefaction waves do not reach the central part, even at the end 
of the pulse (t

 
= 2 ns), as in the case of the homogeneous equivalent.

Inhomogeneity
 

of the density is not smeared out
even after gaps were filled with blow-off materials.
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Snapshots of the temperature profile up to the end of the pulse duration:
▬

 
"Hot spots" appear at the original position of pores by collisions of blow-off 
materials from each foil[1]. (cf. t

 
= 1.5 ns)

▬
 

Averaged temperature of the inhomogeneous target is always lower
 

than
 that of homogeneous equivalent.

The inhomogeneity
 

persists by the periodic exchange 
between the kinetic and the thermal energy.
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A 577
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Effect of pore size was investigated by changing the gap between
 

slabs:
▬

 
The gross density was kept constant at mean

 

= 0.1solid

 

.

▬
 

Example: Profiles of , kT
 

and E
 

for D
 

= 9-m target at t
 

= 0.5 ns:

Averaged "macroscopic" dE/d(x) was evaluated
using the total energy loss through the target.
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Temporal evolution of the "macroscopic" stopping power as a function of 
initial pore radius:
▬ Before homogenization (t

 
< 

 
1 ns), the energy deposition in the foam targets 

are smaller than in the homogeneous target.  Low target temperature!
▬ After homogenization at the end of pulse duration, energy loss by every target

 is roughly equal.

Macroscopic stopping power decreases with
increasing the pore size of the foam target.
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2. Effects of Projectile Energy Ramping
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Change of the Bragg curve with kT
 for low-density Al target:

▬
 

dE/d(x) increases with kT
 

at fixed .


 
Energy-deposition and kT

 
profile at the

 end of the pulse duration:
▬

 
Projectiles can stop in the target

 at high kT! (range shortening)

Due to the increase of dE/d(x) with kT,
the rear side of the target cannot effectively be heated.
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Waveform of the incident projectile
 energy ramping:

▬
 

Constant ramping during the pulse
 duration (t

 
= 0-2 ns)


 

e. g. History of the energy-deposition-
 and projectile-energy profile for

 (Ef

 

-
 

Ei

 

)
 

/ Ei

 

= +30%

As compensation for the increased stopping, temporal 
ramping of the projectile incident energy was examined.
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Projectile energy ramping during the pulse duration:
▬

 
Compensation for increased stopping due to the target temperature rise


 

Energy-deposition and kT
 

profile
 

at the end of the pulse duration
 for different ramping rate:

▬
 

Optimum ramping rate 
 

+30%
 

 dE/d(x) inhomogeneity
 

=
 

20%
  kT

 
inhomogeneity

 
=

 
13%


 

Energy (velocity) modulation  consistent with the beam bunching scheme?

By temporal ramping of the projectile incident energy,
homogeneity of heating can be improved.
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The projectile energy was increased
 from the beginning of the pulse duration

 to secure a sufficient penetrability:
▬

 
Constant energy, no temporal ramping


 

e. g. History of the energy-deposition-
 and projectile-energy profile for

 E/E0

 

= +30%:

As an alternative, simple increase (without temporal
change) of the incident projectile energy was tested.
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Energy-deposition and kT
 

profile at the end of the pulse duration (t
 

= 2 ns)
 for different increment factor:

▬
 

Comparable improvement is obtained, although the incident energy
 

is constant
 during the whole pulse duration.

▬
 

Optimum increment factor 
 

+30%  dE/d(x) inhomogeneity
 

=
 

19%                
 kT

 
inhomogeneity

 
= 15%


 

No projectile-velocity modulation  compatible with the bunch compression!

Also simple increase of the incident projectile energy 
can improve the homogeneity of heating.
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Effects of initial target inhomogeneity
 

analyzed by a 1D hydro code:
▬

 
Initial inhomogeneity

 
is not completely smeared out even after the gap (pore) is 

filled with the blow-off materials. (
 



 
overestimation of the effect?)

  Multi-dimensional calculations are needed for detailed analysis.
▬

 
Before homogenization, the total energy deposition into the target is smaller 
than expected for homogeneous equivalent.  

▬
 

"Macroscopic" mass stopping power decreases with the pore size.
  No effect is expected for small (

 
1 m) pore sizes.


 

Effects of projectile-energy ramping:
▬

 
Inhomogeneity

 
of heating due to the range shortening can be reduced.

▬
 

Similar effect is available also by simply increasing the incident energy,
 without temporal ramping.

"Effects of Initial Target Inhomogeneity
 

and "
Conclusions:

Cost
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