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HIF & HEDP Studies at Utsunomiya University
S. Kawata, T. Kikuchi
1) Beam Physics - Final Beam Bunching

2) HIF Implosion & Robust HIB illumination
3) Rayleigh—Taylor Instability Study in HEDP

Beam Dynamics during Final Beam Bunching
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Beam Dynamics Analysis during Bunch Compression
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HIB Illumination non—uniformity + Implosion simulation
—> Robust Illumination against dz

—> DirecttIndirect Mixture Implosion Mode

Pellet injector ——»

Implosion non-uniformity < a few %
-> HIB illumination non-uniformity
should be less than a few %.  Reactor chambef center
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niformity

(a) dz=0[mMm]
2.0%
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If dz requirement is relaxed, requirements for HIB control

precision, target positioning, & monitoring precision are relaxed.
—> robust HIB illumination scheme & robust target
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Schematic View of the Induction Synchrotron
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K.Takayama and J.Kishiro, “Induction Synchrotrons”, Nucl. Inst. Meth. A451, 304-317 (2000)



Set-up of the induction synchrotron using the KEK 12GeV PS
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Full Demonstration of the Induction Synchrotron 2

300msec
Just before Acceleration after the beginning of Acceleration
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Induction Modulator composed of
5-unit Cells for Waveform Control

Module Structure
FET-Driver
Waveform Stacking

Robust against Load Condition

dellser trigger unit

pulse modulator
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FET unit
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Block Diagram of Induction Modulator
composed of 5-unit Modules
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Warm-dense Matter Studies using Pulse-powered
Exploding Wire Plasma in Water

Experimental Setu
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Charge Voltage: 10kV

C: 3.2puF

Circuit Inductance: 112nH
Load: Al, Cu and W Wire

Experimental Arrangement

Advantages of This Scheme

(1) Electrical conductivity is directly measured
by wire voltage and current.

(2) Density is measured by evolution of wire
Picture of Load Section radius.

(3) Pressure history can be measured by shock
wave trajecties in water.




Semi-empirical fitting of hydrodynamic behavior
brings us EOS modeling

Shock Pressure
Wave Hump Plasma Boundary

Xploding Wire Plasma~ Boundary
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Experimental Arrangement for the Formation
of E-M driven 1-D Strong Shock Wave
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For time-resolved measurements, the SSD has to be

used in combination with a fast beam deflector.

Many shots are needed to detect one particle:
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To test the timing performance of the system, projectile
energy loss in a laser-plasma target was measured.

The shock-driven plasma target and the differential pumping system is
NOT YET installed in the beam line!

As a substitute, a laser-plasma target was prepared as a short-lived target:
A polyethylene plate was irradiated with a pulsed laser to produce a plasma

blow.
Diagnostic measurement of the plasma was not performed.
slit Polyethylene plate St Slit Magnetic deflector
Kicker ‘ T mm I | I& I for rejection of
a - — ~35mm i plasma light
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\ Nd-glass laser:
/ =1.06 nm, 30 ns, ~ 108 W/cm?



Temporal dependence was observed for
the projectile energy loss in the plasma blow.

Preliminary result on the time-resolved energy loss measurement:
Energy loss LE = 20 keV
Target thickness [x = 15 mm — Target atomic density ~ 1018 cm=3 (?)
dE/dx(cold (CH,),,) = 6 MeV/(mg/cm?)
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Core plasma temperaturs 1he v-arou=m’
70g/cc due to enforced heating —
Thermal neutron yields increased from 104
to 107

Cone may focus the heating laser light and
hot electrons from the cone wall to the
cone inner tip

R.Kodama et al. Nature 412 798-802 (2001);
418, 933 (2002)
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Advanced fast ignition witn ohysical cone guiding

What is the heating laser power at \>
ignition level? PW or higher or lower? | :
How the laser-core energy coupling

efficiency changes at ignition level?
Further increasing or decreasing?

A
(R

0.1 1 5~10

Heating laser power (PW)
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The reason for CE reduction is
attributed to high -e temperature. At
ignition level, temperature would be
even higher.



Al foarn coating does not cn

slectron energy speciral characteristics
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*There is a question: why there is no comparable increase in the amount
of hot electrons observed with Au foam coated target?

In vacuum electrons escaping from the target is fully limited by the static potential.
[T. Yabu-uchi et al., submitted to Phys. Rev. E.]



FIREX l@ser sipedificaiion

Energy 12 kd/4 beams (chirped pulse)
10 kd/4 beams (compressed pulse)

Wavelength 1053 nm

Pulse shape 1-20 ps (FWHM)
Rise time = 1-2 ps 06-10 PW

Beam synchronization 0.1 ps (timing jitter)
< M5 (phase)

Focusability 20-um diameter (50% efficiency)
F/6 (4 beam cone)

Pulse contrast <10° __ One beam by March 2007
Full PW laser available in 2008
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Power map of wor proton lerators
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Summary

1. HIB
Induction Synchrotron

Induction Modulator for Waveform Control
Beam Physics via Simulation

2. HEDP
HEDP Based on Pulse Power

dE/dX Experiment toward HED Target
Up-grade of PW Laser

MFE
Laser
. HIF

Funding



