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The pulse line ion accelerator concept was motivated by the desire for an inexpensive way to accelerate
intense short pulse heavy ion beams to regimes of interest for studies of high energy density physics and
warm dense matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave
pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant
parameter helical lines are described which result in output energies of a single stage much larger than the
several hundred kilovolt peak voltages on the line, with a goal of 3–5 MeV=meter acceleration gradients.
The concept might be described crudely as an ‘‘air core’’ induction linac where the pulse-forming network
is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get
voltage multiplication.
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I. INTRODUCTION

In the ‘‘pulse line ion accelerator’’ (PLIA) concept
described in this paper, a ramped high voltage pulse is
applied at the input end of a helical pulse line structure.
The resulting traveling wave pulse on the line can accel-
erate an ion bunch to energies much greater than the peak
voltage applied to the line. It should also be possible to
achieve an axial acceleration gradient of several MeV per
meter with realistic helix parameters.

The development of this concept was originally moti-
vated by a proposal to use moderate energy intense ion
beams to heat matter to regimes of interest for studies of
high energy density physics (HEDP) and warm dense
matter (WDM) [1]. In this approach, very short pulses
(� a nanosecond or less) of ‘‘medium mass’’ ions with
energies slightly above the Bragg peak are focused to mm
scale spot sizes onto thin target ‘‘foils,’’ which may in fact
be foams with mean densities of order 10% solid density or
less. The high degree of uniformity and efficiency with
volumetric and shockless heating of the target to tempera-
tures of order 1 to 10 eV are attractive features in this
approach.

The concept presented in this paper is an excellent fit to
the accelerator requirements for this HEDP/WDM appli-
cation. A helical pulse line inserted into a large bore 5–
10 T superconducting solenoid can transport and accelerate
a singly charged Ne or Na ion bunch with a total charge of
order 0.1 to 1 �C, an axial bunch length of 10’s of cm, and
a radius of a few cm. The required axial compression to
bunch lengths of order 1 cm in a neutralized drift com-
pression region following the accelerator is then only a
factor of 10–30, which greatly eases the requirements on
longitudinal emittance, velocity tilt, and drift distance.

The major attraction of the concept is the very low
development and capital cost it promises. The helical pulse
line structures are simple to construct and relatively inex-
pensive. Many features of the wave launching, propaga-
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tion, dispersion, etc. have already been tested on very
inexpensive full scale low voltage models [2]. The pulse
power drivers are inexpensive (especially at the very low
repetition rates needed for an HEDP user facility) and only
a few are needed to accelerate Ne� 1 or Na� 1 (for
example) to the required 20–25 MeV energies. Finally,
the commercialization of high field superconducting sol-
enoids that has been driven by markets in the billion dollar
class, like NMR and MRI, makes them relatively inexpen-
sive compared to the more specialized magnets generally
used in particle accelerators. A relatively high acceleration
gradient is still essential of course for the overall facility
cost to be low, and this remains to be demonstrated.

Presentation of the basic pulse line accelerator concept
is the main purpose of this paper. Simple models are
developed to provide the design tools needed for a zero-
order design of a PLIA system. Subsequent publications
are planned that will cover more details on the modeling,
experimental results, and computer simulations. Numerical
examples will generally use parameters appropriate to the
HEDP/WDM application, but otherwise the presentation
of the concept should be general enough for readers to
judge the suitability of the concept to applications of
interest to them.

The outline of the paper is as follows. The basic helical
pulse line concept is described in Sec. II. In Sec. III,
concepts for coupling the high voltage traveling wave
onto the pulse line are described. Simple kinematics analy-
ses of several ion acceleration scenarios are presented in
Sec. IV. The maximum energy gain of an ion pulse in an
untapered pulse line section is derived, and tapered pa-
rameter pulse lines that maintain synchronism between the
ions and the traveling wave are analyzed. A ‘‘snowplow’’
mode of operation that might be useful in the first accel-
eration stage is also described, where the wave speed is
much faster than the initial ion velocity. In Sec. V a more
complete treatment of the electromagnetic fields and wave
dispersion at short wavelengths is presented. A simple
1-1 © 2006 The American Physical Society
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analysis of beam loading and bunching instabilities is
covered in Sec. VI. Conclusions are presented in
Sec. VII, including a discussion of phenomena that will
place constraints on the design space of a helical pulse line
accelerator and on the acceleration gradients that might be
achieved.

II. BASIC CONCEPT

A sketch of a helical pulse line of radius ‘‘a’’ located
inside of a conducting cylinder of radius ‘‘b’’ is shown in
Fig. 1. A dielectric media of permittivity " is located in the
region outside the helix, while the region inside the helix
(where the ion beam is transported) is vacuum. To provide
continuous radial focusing of an intense ion bunch, the
entire cylindrical structure can be inserted into a large bore
solenoid magnet.

Physical realizations will typically have a thin insulating
cylinder inside the helix to provide the vacuum barrier, and
this insulator must sustain the desired pulsed axial voltage
gradients of several MeV per meter along its vacuum
interface without flashover. The helix might be wound on
this insulator, or on an insulating cylinder of slightly larger
radius. As we will see, the dielectric media outside the
helix will be stressed by pulsed voltages of (typically)
several hundred kilovolts; it could be a solid material or
an insulating liquid like oil.

The wave speed regime we are considering for ion
acceleration is the order of 1%–10% of the speed of light
in vacuum, and the axial wavelength spectrum of interest is
large compared to the helix radius. In this regime, the
helical line can be modeled as a transmission line with
equivalent inductance and capacitance per unit length of

 L0 � �n2a2�0�1� a2=b2� (2.1)

 C0 �
2�"

ln�b=a�
; (2.2)

respectively, where n is the number of turns per meter of
the helix and the ‘‘shielding factor’’ �1� a2=b2� in the
inductance accounts for the fact that the net axial flux of
the microsecond time scale pulsed axial magnetic fields
within the conducting cylinder must vanish.

Defining the voltage from the helix to the outer cylinder
as V�z; t�, and the �z directed current in the helix as I�z; t�
FIG. 1. Helical pulse line.
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(see Fig. 1), the transmission line equations in the long
axial wavelength regime are

 

@V
@z
� �L0

@I
@t

(2.3)

 

@I
@z
� �C0

@V
@t
: (2.4)

The well-known solutions to these elementary transmis-
sion line equations are traveling waves of arbitrary shape,
i.e., for the wave traveling in the �z direction

 V�z; t� � V��z� vct� (2.5)

with vc � �L0C0�
�1=2, the circuit wave speed. The current

I�z; t� is equal to V�z; t� divided by the characteristic
impedance of the transmission line Z0 � �L0=C0�

1=2.
With the output end of the helical pulse line terminated
in this characteristic impedance, the �z traveling wave in
Eq. (2.5) is the total solution for all time.

The axial electric field inside the helix is approximately
constant in radius in this long wavelength approximation,
so the ions are all accelerated by a circuit field given by

 Ez � �
@V
@z
: (2.6)

A typical example of the voltage pulse we consider is
shown in Fig. 2. At the input end of the helix a pulse power
source (using one of the coupling schemes discussed in
Sec. III) creates a ramped voltage waveform in time at a
fixed z position (say z � 0) of the form shown in Fig. 2. In
the (approximately) linear ramp region, the voltage goes
from �Vo to �Vo in a time scale of order �c, where as a
precise definition of �c we might use

 �c �
2V0

�@V�=@t�at the center of the ramp
: (2.7)

At some later time t � t1 > �c, a ‘‘snapshot’’ of the volt-
age on the line vs z is as shown in Fig. 3. This voltage
FIG. 2. (Color) Voltage waveform at the helix input (z � 0).
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FIG. 3. (Color) Snapshot of voltage on helix vs z.

PULSE LINE ION ACCELERATOR CONCEPT Phys. Rev. ST Accel. Beams 9, 060401 (2006)
waveform propagates down the line with the circuit speed
vc maintaining a constant shape (in the long wavelength
limit). The negative ramp extends over a distance of order
lc � vc�c controlled by the applied pulse power wave-
form. An ion bunch located in the ramp region moving
with a velocity vb will be accelerated by the axial electric
field given by Eq. (2.6). This axial circuit electric field vs z
is shown in Fig. 4, at the time t � t1. In the sketch shown,
this field is approximately constant over the ramp region,
with an average value of

 Eacc �
2V0

lc
(2.8)

accelerating the ion bunch located in the ramp region.
Note that a bipolar voltage pulse like that shown in Fig. 2

would generally be preferred because it maximizes the
axial acceleration gradient for a given limit on the radial
electric field gradient outside the helical line. In Fig. 4, a
slight negative ramp on the electric field is indicated,
including the option of a ‘‘bump’’ on the tail of the ramp.
Features like these are available in this concept, using
FIG. 4. (Color) Snapshot of accelerating electric field vs z.
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appropriate fine-tuning of the pulse power source wave-
form, to provide axial focusing and/or axial confinement of
the ion bunch. (These features are similar to the ‘‘ear
fields’’ in the induction linac approach to heavy ion fu-
sion.) Note also that, in the final accelerator section, a
much more vigorous negative ramp in the electric field
waveform can be used to impart an inward compression to
the beam for neutralized drift compression in ion-driven
HEDP applications.

The basic acceleration process involving ions ‘‘surfing’’
on a traveling wave is of course superficially very similar
to the acceleration of an ion bunch in a radio-frequency
linear accelerator (RF linac). Some important differences
are the fact that the axial confinement gradients and the
acceleration gradients are independent ‘‘knobs’’ in the
pulse line ion accelerator, controlled by ‘‘tweaking’’ the
voltage waveform of the pulse power driver (rather than the
phase of the bunch in the RF bucket). In addition, in many
cases of interest (as we discuss in Sec. IV), the ion speed is
far from synchronism with a constant velocity circuit trav-
eling wave. In these cases the ion bunch ‘‘rides up and
down’’ the accelerating ramp shown in Fig. 3 in the accel-
eration process; the whole length of this acceleration stage
is about one synchrotron period in RF accelerator terms.

Indeed, the PLIA in many ways is more closely related
to induction accelerator technology than RF accelerator
technology, especially in the use of pulse power technol-
ogy as the driver. The concept might be described crudely
as an ‘‘air core’’ induction linac with a pulse-forming
network integrated into the beam line creating an acceler-
ating voltage pulse that moves along with the ions. This
traveling wave feature and the voltage multiplication it
produces are key advantages over the more standard
‘‘standing wave’’ induction linac architectures.

The oil dielectric helix constructed at LBNL [2] pro-
vides a useful concrete example of the concept. The first
version of this 1 m long helix was designed for a low
frequency wave speed of 2:9� 106 m=s, appropriate for
initial potassium ion energies around 200–400 keV with
pulse voltages on the helix of �200 keV or more. The
helix radius is 8.1 cm, the ground return radius 11.75 cm,
and the helix pitch 159 turns=m. With a dielectric permit-
tivity (oil) of 2.3, the low frequency capacitance is
344 pF=m, the inductance is 346 �H=m, and the charac-
teristic impedance is about 1 kilo-ohm.
III. INPUT COUPLERS

‘‘Direct coupling’’ of the pulse power source output onto
the helix, as sketched in Fig. 5, is perhaps the most
straightforward approach to consider first. At the input
end of the helix, where peak voltages of �V0 are applied,
control of the gradient along the vacuum insulator in the
region in front of the helix is required. The resistive
column indicated in Fig. 5 serves this purpose. Note that,
as the ion bunch passes through this resistive column
1-3



FIG. 7. (Color) One turn transformer drive illustrated on the oil
helix [2]. The helix wire (green) is grounded to the outer
conducting tube on the left side. (Figure courtesy Matthaeus
Leitner, LBNL).

FIG. 5. Direct coupling.
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region, a head to tail energy variation will be induced along
the ion bunch by the time varying voltage applied to the
helix (assuming the timing is set so the whole ion bunch is
injected into the ramp region of the traveling wave as in
Fig. 3). This is one of the complications with this approach,
although the resulting energy variation could be compen-
sated in various ways.

In the design of direct coupling systems, the feed-
throughs must withstand the full peak voltage of the trav-
eling wave on the helix. The stray capacitance of the
feedthroughs and the input coupler region must also be
accounted for and controlled. The characteristic imped-
ance of helical transmission lines (which appear as a
resistive load on the drive system at the input end) are
the order of a kilo-ohm for typical ion accelerator designs,
so the voltage rise time, a product of this characteristic
impedance times the stray input capacitance, can be
appreciable.

The traveling wave on the helix could also be launched
using the induction cell coupler shown in Fig. 6. Using the
output voltage of the induction cell to drive the helix as
shown in Fig. 6 eliminates the need for the resistive column
and it also eliminates the head to tail energy variation it
induces on the ion pulse. The gap capacitance of the
induction cell might impose a significant constraint on
the ramp rise time, however, as in the direct coupling case.

A third method for driving the helix is the transformer
coupler illustrated in Fig. 7. In this approach, the input end
of the helix is shorted to the outer cylinder (ground). A
primary strap of radius ap with (typically) only one or two
FIG. 6. Induction cell coupler.
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turns is placed near the grounded input end of the helix. A
low impedance pulse power source drives current through
this primary strap. A fraction of the flux created by the
primary strap links the helix, and this flux generates an
axial voltage gradient along the input region of the helix.

If the length over which the primary flux linking the
helix is ‘‘short enough’’ (according to the criteria derived
below), we can think of the input region as a lumped circuit
step-up transformer. The voltage on the helix at the end of
the flux linkage region, VT�t�, will launch a traveling wave
in much the same fashion as if we had connected a direct
drive voltage source at that point. A major advantage of the
transformer coupler is the large step-up in voltage avail-
able. In low voltage tests of models, step-ups of 5:1 or more
have been achieved [2]. The corresponding reduction in the
feedthrough voltage is a particularly attractive feature of
the transformer coupler approach.

A simple model of the transformer coupler can be for-
mulated as follows. Let Ip�t� be the pulsed current on the
primary strap, and Bzp�r; z; t� the axial magnetic filed
created by this primary strap current. The axial flux from
the primary current that links the helix is

 �p�z; t� �
Z a

0
Bzp�r; z; t�2�rdr: (3.1)

This flux adds to the axial flux created by the current in the
helix (� L0I), so the transmission line equations now
contain the source term

 

@V
@z
� �L0

@I
@t
� n

@�p

@t
: (3.2)

Note that the helix capacitance per meter will be modified
near the primary strap since it is grounded on one end to the
outer tube. The model could account for this using a z
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dependent C0�z�, but we will neglect this effect in our
simple zero-order formulation.

The voltage at the input to the primary strap, Vp�t�,
comes from a mutual inductance term proportional to
@I=@t and the self-inductance term proportional to
@�p=@t. We will neglect the mutual coupling in our
zero-order model since it is generally very weak, although
it is easy to include it in the model. The spatial structure of
the magnetic field created by the primary current is quasi-
static in the frequency regime of interest, so the z depen-
dence of @�p=@t can be incorporated in a ‘‘shape
function’’ s�z� by the definition

 

@�p�z; t�

@t
�
4
�Vp�t�s�z� (3.3)

for a one turn primary strap. Note that this shape function
could be directly measured by applying a pulsed voltage to
the primary and measuring the axial flux inside the helix
with a magnetic loop, with the helix open circuited at the
end. The general shape we would expect is indicated in the
sketch in Fig. 8. The peak value of s should be of order
a2=r2

p, where rp is the radius of the primary strap, since the
primary voltage is proportional to the total area inside the
strap while �p is defined as the flux inside the helix area.

A solution for the voltage and current on the helix
launched by a one turn primary strap can be obtained by
first calculating the Green’s function [i.e., the response to a
delta function s�z�]. The traveling wave amplitude that is
launched downstream from the strap (z > lp), with a gen-
eral functional dependence s�z�, is then

 V��� �
n
2

Z
	Vp��� z1=vc� � Vp��� z1=vc�
s�z1�dz1;

(3.4)

where � �
4 t� z=vc. The voltage traveling wave has two

terms: a direct ‘‘radiation’’ from the flux element at z1
FIG. 8. (Color) Sketch of normalized shape function S �
s�z�=s0 vs normalized axial distance Z � z=lp, where s0 �

a2=r2
p and lp is a measure of the axial extent of the primary strap.
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(Vp��� z1=vc�), and the radiation in the �z direction that
reflects off of the shorted end of the helix [Vp��� z1=vc�].

With a primary voltage waveform of the general form
shown in Fig. 2, if the primary voltage ramp length lc �
vc�c is much longer than the physical extent of the primary
flux coupling length (lp), the solution in Eq. (3.4) reduces
to

 V��� � Vp���n
Z
s�z�dz� nlp

a2

r2
p
Vp���: (3.5)

The voltage step-up is therefore proportional to the turns
ratio (nlp) and also the ratio of the flux linkage areas
(a2=r2

p) as we would expect.
In an optimum design for high acceleration gradient the

helix voltage ramp length lc would approach the vacuum
insulator voltage gradient limit. This vacuum insulator
gradient would also set a lower limit on the buildup length
of the primary flux linkage (lp), of course. These two
voltage gradients are roughly equal when lc=2 � lp with
the bipolar waveform shown in Fig. 3. In this case, the
relation between the primary voltage waveform and the
waveform of the helix traveling wave is more complicated.

To illustrate this, we consider the simple sawtooth wave-
form on the primary voltage shown in Fig. 9 with a ramp
duration 2 T equal to 2lp=vc, and a step function depen-
dence of s�z� [s�z� � s0 over 0 � z � lp and zero beyond].
The resulting waveform of the transmitted voltage on the
helix is also shown in Fig. 9. Note that, in addition to the
smoothing of the transmitted wave, the peak amplitude is 1

2
the value that would be obtained with a much longer ramp
length on the voltage waveform applied to the primary
[Eq. (3.5)]. The voltage step-up with a transformer coupler
FIG. 9. (Color) Simple example of waveform smoothing when
the primary flux coupling length is � 1

2 the helix voltage wave-
form ramp length. The primary voltage waveform Vp�t� is shown
in blue, where the peak amplitude of the voltage is normalized to
unity and the time (t) is normalized by T � lc=2vc � lp=vc.
The resulting voltage waveform V��� propagating down the helix
vs the delayed time � � t� z=vc (also normalized) is shown in
red, normalized by its peak amplitude � ns0lp=2.
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depends on the waveform, as this simple example
illustrates.

The smoothing illustrated in Fig. 9 is a general property
of this transformer coupling configuration. Transforming
Eq. (3.4) into the frequency domain, the spectral amplitude
of the transmitted voltage is

 V�!� � nS�!�Vp�!�; (3.6)

where the transformer coupling function in the frequency
domain has the form of a low pass filter

 S�!� �
Z
s�z� cos�!z=vc�dz: (3.7)

This smoothing is actually a useful property of this cou-
pling method, since as discussed in detail in Sec. V we
need to limit the bandwidth of the transmitted voltage to
avoid distortion of the waveform as it propagates, and/or
radial structure (decay) of the high frequency components
of the axial electric field.

Note that the ‘‘natural smoothing’’ of the waveform
launched on the helix also helps to limit the axial gradient
when ‘‘nonideal’’ primary drive waveforms are used. As a
very simple example to illustrate this point, consider a step
function voltage drive waveform applied to the primary
with the same step function dependence of s�z� [s�z� � s0

over 0 � z � lp and zero beyond]. The voltage wave-
form launched on the helix has the form shown in Fig. 10;
the maximum axial gradient of the traveling wave on the
helix created by this instantaneous step rise is limited to

 Ez �
Vmax

2lp
: (3.8)

A distributed helical transformer is another coupling
scheme that might prove useful. The basic idea is to con-
struct a second concentric helix with a radius very close to
the outer conducting tube radius (r � b), and (possibly)
with a higher dielectric constant material between it and
the outer cylinder resulting in a much higher capacitance
per meter for the outer helix. The turns per meter would be
much less than on the main helix (n), but adjusted to make
the wave speeds approximately equal. A wave launched on
/t z vcτ = −

/l vp c− /l vp c

maxV

FIG. 10. Voltage waveform launched on a helix by a step
function voltage applied to the primary of the transformer.
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the outer helix, which acts as the ‘‘primary’’, propagating
in the �z direction (say) would gradually transfer its
energy over to a synchronous �z traveling wave on the
main helix. (For a discussion of the behavior of coupled
mode systems like this where the coupling is very weak,
see, for example, Louisell [3].) Since the outer helical line
has a characteristic impedance much less than the main
helix, a voltage step-up should be produced. (A simple
model calculation indicates that the step-up is approxi-
mately equal to the square root of the ratio of the capaci-
tances of the two lines).

A detailed analysis of this distributed helical transformer
scheme is beyond the scope of the present paper. However,
we should point out that the distributed coupling concept
might be especially useful as a ‘‘directional coupler’’ in a
‘‘repeater station’’ where we want to regenerate the wave
on a helix. Examples of where this might be desirable
include heavily beam loaded systems, or where the helix
is tapered and the wave amplitude needs to be regenerated
as discussed in Sec. IV.
IV. ACCELERATION SCENARIOS

For intense slowly moving ion beams, a large bore
superconducting solenoid is a good choice to provide the
required continuous radial focusing. In a continuous sole-
noid, the equilibrium beam radius of a space charge domi-
nated beam is independent of the particle energy, and
proportional to the square root of the line charge density.
Transporting the ion pulse with a constant axial length is
therefore a natural acceleration scenario to use with sole-
noidal focusing, since it keeps the beam radius at its
constant matched value. Constant beam length is also a
very good fit to the pulse line accelerator, of course.

As an example applicable to the HEDP objective, the
equilibrium beam radius of a Ne� 1 beam with a line
charge of 1 �C per meter is 12=B cm, with B the solenoid
field in Tesla (e.g., 2.4 cm in a 5 T field). A total charge of
0.1 to 0.2 microcoulombs in the bunch can then be obtained
with axial bunch lengths of 10 to 20 cm, short enough to fit
inside a 20–30 cm ramp length of a traveling wave
voltage pulse on the helical line. At these high line
charge densities, a significant ‘‘tilt’’ in the axial electric
field [e.g., Fig. 4] would also be required (��0:25 to
0:5 MeV=m) if continuous axial focusing is desired. (At
higher particle energies, the axial focusing might be ap-
plied periodically rather than continuously since the axial
expansion lengths are longer.)

Particle simulation codes are needed to adequately treat
the radial and axial dynamics of intense ion bunches, and
these studies are just beginning. To provide initial physical
insight into the acceleration dynamics and the various
design options, we present here simple kinematics of ion
bunches in several acceleration scenarios ignoring the axial
space charge forces and the beam loading discussed in
Sec. VI (i.e., the limiting case of low intensity bunches).
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FIG. 11. (Color) Maximum ion energy gain in an untapered line
normalized to V0 vs system length normalized to lb for Wbi �
10V0.
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These analyses can also be useful as the first step in an
iterative design process to define the axial focusing re-
quirements with higher bunch intensities.

A. Untapered pulse line

The first case we consider is acceleration in a pulse line
with constant L and C parameters. Consider an ion bunch
of length lb initially located at the front end of the traveling
wave ramp region, where all the ions move with the initial
velocity vbi (see Fig. 3). With a constant slope on the ramp
going from�V0 to�V0 over the length lc, the accelerating
field is constant over the ramp region and equal to 2V0=lc,
so the ion bunch maintains a constant length as it is
accelerated. We define the initial velocity ‘‘slippage’’ as

 �v � vc � vbi:

Consider first a very short bunch of ions (lb=lc ! 0). If we
go into a reference frame moving with the circuit velocity,
the ions are initially moving backwards from the front of
the ramp with a velocity �v. The condition for this short
bunch to ‘‘ride up and down’’ the accelerating ramp while
still remaining ‘‘trapped’’ by the wave is

 ��v�2 � 2v2
0; (4.2)

where we define v0  �2qV0=M�1=2, the speed of an ion
accelerated through a potential V0. At the position where
the short ion bunch arrives back at the front of the ramp
region (the maximum energy gain possible with this un-
tapered line), its velocity in the lab frame is

 vbf � vbi � 2�v: (4.3)

This is a general result for all cases where the ions are
trapped by the wave. The maximum velocity gain is where
we reach the limit in Eq. (4.2), vbf � vbi � 2

���
2
p

v0, cor-
responding to a kinetic energy increase at the end of the
acceleration process equal to

 

Wf

V0
� 8� 4

������������������
2Wbi=V0

q
: (4.4)

Even in the early acceleration stages, where the initial
kinetic energy of the ions Wbi might be comparable to
V0, an energy gain of 15–20 times the peak voltage on
the line can be obtained with a short bunch. This all
assumes, of course, that the system length and acceleration
gradient are large enough to reach this limit.

The situation where the ion bunch occupies a substantial
fraction of the ramp length will generally be the case of
greater interest. One would like to choose the voltage ramp
length as short as possible to maximize the acceleration
gradient, of course. To understand the tradeoffs, we assume
that the ion bunch length lb is fixed at its minimum value
consistent with the limit on line charge density from radial
focusing. The circuit ramp length lc is then considered to
be the free parameter we can vary.
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Let zb�t� be the axial coordinate of the ions at the head of
the bunch. Then the ‘‘slippage distance’’ of the bunch head
behind the front of the ramp is given by

 �z � vct� zb�t�; (4.5)

where we take t � 0 as the start of the acceleration process.
The maximum energy gain for all the ions will clearly be
obtained when the constant length ion bunch ‘‘rides up and
down’’ the full extent of the linear voltage ramp without
having the tail ions ‘‘fall over’’ the peak of the ramp at�
V0 (see Fig. 3). This requires

 �zmax � lc � lb; (4.6)

where �zmax is the maximum slippage distance, reached at
the point where the ions reach synchronism with the circuit
wave. Solving for the head ion motion in the assumed
constant acceleration field, the limit in Eq. (4.6) is reached
with an initial velocity slippage determined by

 

�
�v
v0

�
2
� 2�1� lb=lc�: (4.7)

The ion velocity at the end of the acceleration process,
where the bunch head is leaving the ramp region, is again
given by Eq. (4.3). By solving for the system length re-
quired to reach this �v, we can relate the maximum ion
energy gain at the output to the system length for various
initial ion energies.

Examples with initial ion energies equal to 10V0 and
100V0 are shown in Figs. 11 and 12, respectively. In both
figures, the maximum ion energy gain is normalized to V0

and the system length is normalized to the ion bunch length
lb. For each value of the system length (with a given beam
pulse length and peak voltage V0), the circuit ramp length
and circuit wave speed are both optimized to achieve this
maximum energy gain (e.g., see the energy doubling point
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FIG. 13. (Color) Normalized ion energy and normalized gra-
dient vs z=Lacc for constant impedance tapered pulse line. (Ion
energy/initial ion energy in blue, gradient/initial gradient �10 in
red.)

FIG. 12. (Color) Maximum ion energy gain in an untapered line
normalized to V0 vs system length normalized to lb for Wbi �
100V0.
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shown in Fig. 11). At very short system lengths, we choose
lc � lb (maximum gradient with a given beam pulse
length) and get an energy gain linearly proportional to
the system length. As we increase the system length to
get a larger gain, we must increase lc=lb and the achievable
energy gain eventually saturates at the value given by
Eq. (4.4).

B. Tapered line with constant impedance

To get larger energy gains from a single pulse line
section, it is natural to consider tapering the helical line
parameters to maintain synchronism between the circuit
speed and the accelerating ions. A variety of tapering
schedules might be considered. Here we present one such
option, namely, decreasing the inductance and capacitance
at the same rate to maintain a constant line impedance as
the circuit velocity is increased:

 L�z� � Li
vci
vc�z�

; C�z� � Ci
vci
vc�z�

;

Z0 �
�������������
Li=Ci

q
� const;

(4.8)

with vci the initial circuit velocity. With this choice, the
solution of the transmission line equations are traveling
waves of the form

 V�z; t� � V0 f
�
t�

Z z

0

dz0

vc�z0�

�
; (4.9)

 I�z; t� � V�z; t�=Z0: (4.10)

We choose the usual ramp waveform for V0f��� illustrated
in Fig. 2 with peak amplitudes of � V0. The constant
impedance tapering, besides making the ‘‘WKB-like’’ so-
lutions exact solutions, has the special property of main-
taining a constant peak amplitude of the voltage as the
06040
circuit velocity speeds up (an obvious result from the
standpoint of power conservation). This tapering schedule
would therefore be preferred in a pulse line accelerator
design with a high initial acceleration gradient, where the
radial voltage would tend to approach its breakdown limit.

The axial electric field does weaken as the circuit ve-
locity is increased, however, since for the ramp in Fig. 2

 Ez � �
@V
@z
�

2V0

�cvc�z�
: (4.11)

This decrease comes about because the spatial extent of the
ramp region spreads out in z as the pulse propagates down
the line.

If we taper the line to maintain synchronism between the
circuit speed and the accelerating ions, and use Eq. (4.11)
as the axial force on the ions, we can derive the ion energy
as a function of z as

 

Wb�z�
Wbi

�

�
1� 3

V0

Wbi

z
lci

�
2=3
: (4.12)

In Eq. (4.12), lci � vci�c is the initial ramp length, which
we will set equal to the ion bunch length lb for purposes of
comparing the tapered and untapered lines (i.e., the bunch
initially fills the full ramp region).

The normalized ion energy and accelerating gradient are
plotted vs z=Lacc in Fig. 13, where Lacc  lb

Wbi
3V0

is the
acceleration scale length. (Note that the total ion energy
is plotted in Fig. 13, as opposed to the ion energy increase
plotted in Figs. 11 and 12.) As illustrated in Fig. 13, the
local accelerating gradient has dropped to �70% of its
initial value when we reach the point where the ion energy
has doubled, and to�50% when we get to an ion energy of
4 times the initial value.

Tapered and untapered lines are compared in Fig. 14 for
the case of an initial ion energy of 10V0. In Fig. 14, the
system length (normalized to the beam pulse length) is now
1-8



FIG. 15. Drive voltage waveform applied at the input of the
helix in the snowplow mode. The ion bunch is loaded prior to
t � 0.

FIG. 14. (Color) Comparison of a tapered (red) and an untapered
(blue) helix for Wbi=V0 � 10.
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the vertical axis while the horizontal axis is the ratio of
final ion energy to initial ion energy. We see that, for this
initial ion energy, the advantages of tapering the line are
not significant until we get well beyond a doubling of the
initial ion energy.

The main lesson we draw from this comparison is that
the untapered line may be a good choice in many circum-
stances, depending on the various factors that will ulti-
mately limit the length of a given accelerator stage
(dispersion, beam loading, etc.). An untapered helix has
more flexibility, of course, since tapering is tied to a
particular acceleration schedule. This flexibility and sim-
plicity is particularly attractive for initial experimental
studies.

C. Snowplow mode

In the ‘‘normal operating mode’’ of the pulse line ion
accelerator discussed in the previous two subsections, the
ions are injected during the traveling wave voltage ramp
with a velocity reasonably close to synchronism with the
circuit speed. The ion bunch length is less than the voltage
ramp length, and the ions remain trapped by the pulse line
traveling wave throughout the acceleration process. This
mode, with or without tapering the line velocity, is the
natural choice for the higher energy acceleration stages.

The ‘‘snowplow mode’’ of the helix pulse line described
in this subsection could serve as an alternative to the
resistive column in a ‘‘load and fire injector.’’ It might
also be useful in other circumstances. We describe the
basic concept here mainly because it illustrates the broad
range of possibilities, and flexibility in operating modes,
with the pulse line accelerator compared to RF
accelerators.

In the load and fire injector proposed to generate ion
beams for HEDP, ions from an ‘‘accel-decel diode’’ are
loaded into a solenoid transport system to get as high an
initial line charge density as possible [4]. In the resistive
column version, an axially uniform accelerating electric
field is turned on after the ion bunch is loaded, in a time
06040
scale short compared to the ion transit time through the
system. In addition to the mean energy gain, a velocity tilt
is also imparted to the ion bunch because the head of the
bunch travels a shorter distance through the resistively
graded accelerating column than the tail.

In the traveling wave snowplow mode of a pulse line, a
voltage ramp with the shape shown in Fig. 15 is applied at
the input of the helical line after the ion bunch has been
loaded into the helix. This ramp waveform then propagates
through the slowly moving ion bunch. In contrast to the
‘‘normal operating mode,’’ here the ions slide up the mov-
ing voltage pulse and onto the flat top (where the accelera-
tion drops to zero). Choosing a circuit velocity much faster
than the initial ion velocity can ensure that this happens.
The reason we chose to avoid ‘‘trapping’’ the ions in the
present scenario, where the ion bunch is first loaded and
then overtaken by the traveling wave, is that orbit over-
taking and mixing would result from the trapping. This
would likely have a deleterious effect on the longitudinal
emittance.

As we show, the moving voltage ramp accelerates the
ions and it can also act to compress the bunch length. Note
that there is no requirement in the snowplow mode for the
bunch length to be less than the voltage ramp length. Note
also that, with a long enough flattop on the drive voltage
waveform, all the ions will pick up an additional energy of
�V0 at the exit where the pulse line is terminated in its
characteristic impedance.

As in the previous subsections, the trajectories of the
ions with the idealized voltage waveform shown in Fig. 15
are derived ignoring the axial space charge forces. The
results are useful for zero-order designs of a snowplow
injector, and as analytic checks on more complete com-
puter simulations.

With the voltage waveform in Fig. 15 applied at the
input end, the traveling wave propagating on the helix
has a constant axial electric field during the ramp portion
equal to

 Ez � V0=lc; (4.13)
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FIG. 17. (Color) Final bunching factor vs u0 � V0=Vsynch.

FIG. 16. (Color) Trajectory of a typical ion in the ‘‘snowplow
mode.’’ The ion is located at the position z0 when the traveling
wave starts to propagate down the helical line.
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where, as with the bipolar waveform, the ramp length lc is
the ramp duration �c times the circuit propagation velocity
vc. The trajectory of a ‘‘typical’’ ion located initially at z �
zo and moving with an initial velocity vbi is illustrated in
Fig. 16. In the figure, the axial coordinate is normalized as
Z � z=lc and time is normalized as T � t=�c, so the
propagation of the circuit wave has a slope of unity.

The solution for the particle trajectory in Lagrangian
coordinates is elementary. Up to the time t1 when the
leading edge of the accelerating field reaches the ion, it
moves with a constant initial velocity, so

 z�z0; t� � z0 � vbit: (4.14)

While the ion is in the acceleration region, it has constant
acceleration so

 z�z0; t� � z0 � vbit�
qEz
2m
�t� t1�

2: (4.15)

Beyond the point where the ion drops behind the propagat-
ing acceleration region (at t � t2), it again moves with a
constant velocity vbf that can be calculated from
Eq. (4.15).

The algebra remaining is a calculation of the intersection
points with the propagating wave (z1; t1 and z2; t2) in terms
of the initial position and velocity of the ion. Readers can
fill in these details for themselves; the results are summa-
rized below.

The following are a useful set of normalized parameters:

 u0 �
2qV0

m�vc � vbi�2
; (4.16)

 � � 1� vbi=vc: (4.17)

As with the bipolar waveform, Eq. (4.2), u0 � 1 is the
threshold voltage amplitude where an ion with the initial
velocity vbi becomes trapped and does not pass through the
accelerating wave.
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In terms of these parameters, the intersection points are

 z1 � vct1 � z0=�; (4.18)

 t2 � t1 �
2�c
�u0
�1�

��������������
1� u0

p
�; (4.19)

 z2 �
z0

�
� lc

�
2

�u0
�1�

��������������
1� u0

p
� � 1

�
: (4.20)

The final velocity of the ion after passing through the
acceleration region is

 vbf � vc�1� �
��������������
1� u0

p
�: (4.21)

This velocity is independent of the initial location of the
ion, as it should be. All ions drifting with the same initial
velocity that pass completely through the acceleration
region will therefore exit the helix with the same energy.

The ion bunch will be compressed because the ions
located nearest the helix input begin their acceleration
before the ions further downstream. To evaluate this bunch-
ing in the zero space charge limit, we use the fact that the
ions located between z0 and z0 � �z0 at t � 0 end up
located between z and z��z at a later (fixed) time t.
The axial length compression can therefore be calculated
from Eq. (4.15) as

 

@z�z0; t�
@z0

� 1�
�u0

2�c
�t� t1�; (4.22)

where we used the relation t1 � z0=�vc. The local line
charge density in the vicinity of our ‘‘typical ion’’ therefore
increases in time as it is accelerated, as

 

�b�t�
�bi

�

�
@z
@z0

�
�1
: (4.23)

The time scale for this compression is of order 2�c=�u0.
Using Eq. (4.19) in Eq. (4.22), the final compression of the
line charge density (in the absence of any expansion from
space charge forces) is
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FIG. 18. (Color) Trajectories in an ion bunch that initially ex-
tends over two circuit ramp lengths and moves with an initial
velocity 1=3 the circuit speed. The bunch is then accelerated in a
‘‘snow plow mode’’ with u0 � 3=4.
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�bf
�bi
�

1��������������
1� u0

p : (4.24)

A plot of this bunching factor vs u0 �
4 V0=Vsync is shown

in Fig. 17.
An example of the trajectories in an ion bunch with an

initial length twice the circuit ramp length is shown in
Fig. 18. The axial coordinate and time are normalized to
the circuit ramp length and duration, respectively, as be-
fore. The case presented has the dimensionless parameter
u0 � 3=4 (for a bunching factor of 2) and an initial ion
velocity 1=3 the circuit velocity (� � 2=3), equivalent to
an initial kinetic energy of V0=3.

The ion bunch initially extends from Z � 0 to Z � 2,
where the ‘‘head particle’’ is located. If we chose the end of
the propagating region of the helix to be at Z � 4, the head
particle will just finish passing through the accelerating
ramp region at the end. (The helical termination resistor is
just beyond Z � 4.) Note in Fig. 18 that the ion bunch
length has been compressed by a factor of 2 at the point the
head leaves the helix, as predicted. Note also that at the end
of the helix, all the ions exit with the same velocity,
namely, 2=3 the circuit velocity, as predicted by
Eq. (4.21). This is equivalent to a kinetic energy at the
end of the helix of 4V0=3, an increase of V0. As the ions
cross the termination resistor region, they all pick up an
additional kinetic energy of V0 as long as the pulse applied
to the helix has a long enough flat top. Note also that as the
ions speed up crossing this termination resistor region,
the pulse expands axially by a factor of 1.32, reducing
the bunching factor overall to �1:5.
V. ELECTROMAGNETIC FIELDS AND WAVE
DISPERSION

In this section, we present generalized solutions of the
electromagnetic fields and the dispersion relation of the
helical pulse line. It is actually very straightforward to
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derive exact solutions to Maxwell’s equations using a
sheath helix model [5]. Full EM simulations including
the actual helical wire geometry have also been carried
out [6]. In the regime of interest for heavy ion acceleration,
however, where the wave speeds are much less than the
speed of light and the transverse dimensions are a small
fraction of a free space wavelength, quasistatic approxi-
mations to the EM fields should be sufficient. Our major
objective here is to develop a self-consistent quasistatic
sheath helix model, and to show how the transmission line
circuit model used in the previous sections is obtained in
the long wavelength limit. We will also obtain general-
izations of the transmission line model in Fourier space,
with k-dependent circuit parameters.

One ‘‘tricky’’ aspect involved in developing these qua-
sistatic field solutions is how to define ‘‘voltage’’ when curl
(E) is not zero. It is also important to recognize that the
dominant source for the electric field is actually the charge
on the helix wires and not the time derivative of the
magnetic flux [7].

The essential approximation involved is a very small
pitch on the helix, namely

 tan� �
s

2�a
� 1; (5.1)

where s � 1=n is the wire spacing. A ‘‘smooth’’ approxi-
mation to the currents and charges on the helix can then be
used to calculate the fields at distances of order s=2 or
greater away from the wires (essentially a sheath helix
model). A current I�z; t� flowing in the helical wires is
then equivalent to an azimuthal sheet current

 K� �
I
s

(5.2)

that is much larger than the axial sheet current Kz �
I=2�a. As a consequence, the dominant magnetic field
components are BZ and Br created by this azimuthal cur-
rent; B� is smaller by a factor of s=2�a (� 1% with
typical heavy ion parameters).

An azimuthally symmetric charge per unit length �
(equivalent to a surface charge � � �=2�a on the sheath
helix) is related to the current in the helical wires by the
continuity equation

 

@�
@t
� �

@I
@z
: (5.3)

This charge acts as a source for an azimuthally symmetric
electric field with components Er, Ez. If we neglect @B�=@t
compared to this charge as the dominant source of the
electric field, in a plane with � � const we can use

 

~E � �r� (5.4)

to describe the quasistatic electric field. The voltage on the
helix is then

 V�z; t� � ��r � a; z; t�: (5.5)
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FIG. 19. (Color) Normalized inductance per meter vs ka for
a=b � 0:6.
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The final ‘‘link’’ required is the connection between this
helix voltage and the time changing axial magnetic flux
inside the helix. Using a path integral in Faraday’s law that
goes inside the helix wires at their radius r � a over a
distance �z, encircling the magnetic flux inside the helix
n�z times, we have a voltage change over �z given by

 �V � �n�z
Z a

0

@Bz�r; z; t�
@t

2�rdr: (5.6)

In the continuous limit, we have

 

@V�z; t�
@z

� �n
@��z; t�
@t

: (5.7)

Here

 ��z; t� �
Z a

0
Bz�r; z; t�2�rdr (5.8)

is the total flux inside the helix, created by both the helix
azimuthal current and the primary strap current (when
transformer coupling is used).

Note that the azimuthal electric field at the helix E� �
� 1

2�a @�=@t is s=2�a smaller than the axial electric field
(also order of 1%).

We also emphasize that the ‘‘sheath model’’ of the helix
that we are using describes the EM fields accurately out-
side of radial distances about s=2 away from the helix
(� few mm’s typically), since the spatial harmonics
needed for a full field solution decay as exp� 2�m

s jr�
aj. The great increase in complexity involved in resolving
the EM fields on the fine scale of the wires is unnecessary,
except for quantifying the stresses in this region.

A. Computational and analytical field models

The electrostatic and magnetostatic field solutions are
governed by solutions to Laplace’s equation with
 

r2� � 0; E � �r�; (5.9a)

r2 � 0; B � �r : (5.9b)

The source for � is the surface charge on the sheath helix
� � �=2�a, which enters in the usual way as a jump
condition on the radial derivative of � at r � a.
Similarly, the source for  is the azimuthal sheath helix
current K� �

I
s that enters as a jump condition on the axial

derivative of  at r � a.
These electrostatic and magnetostatic field solutions are

coupled through Eqs. (5.3) and (5.7) [noting the definitions
in Eqs. (5.5) and (5.8), which are basically a form of
‘‘generalized transmission line equations’’ connecting
V�z; t� and I�z; t�. A general computational approach based
on this model has been initiated that could incorporate end
effects, models of the primary strap, the resistive termina-
tion region, ion beam charges as a source for the electric
potential, etc. [8]. The essential approximation is the use of
a continuous sheet model of the helix, in addition to the
060401
quasistatic approximations to Maxwell’s equations in the
form developed here.

An analytical model of wave propagation on the helix
(not including end effects) can also be formulated with this
model by going into Fourier space [ exp��jkz�] and solv-
ing the Laplace equations subject to the usual boundary
conditions. The result can be put in the form of trans-
mission line equations with an equivalent k-dependent
capacitance and inductance per unit length. The magneto-
static field B � �r created by K� � nI identifies the
inductance per meter L�k� using Eq. (5.8), and the electro-
static potential � created by the line charge � identifies the
capacitance per meter using � � C�k���r � a�.

B. The magnetostatic field and the inductance
per meter

The magnetic field inside and outside the helix can be
derived from B � �r , where r2 � 0. The general
form of the solution for  is
 

 � AIo�kr� for r < a;

 � BI0�kr� � CK0�kr� for r > a: (5.10)

We omit the details of the algebra. Using the boundary
conditions Br�r � b� � 0, Br continuous across r � a,
and Bz�r � a�� � Bz�r � a�� � �0K�, the three con-
stants in the solution (5.10) can be determined. For ex-
ample, the axial field inside the helix is

 Bz�r� � ka	K1�ka� � I1�ka�K1�kb�=I1�kb�
�0K�I0�kr�:

(5.11)

Using this axial field in Eq. (5.8), the generalized induc-
tance per meter can be identified as

 L�k� � 2�n2a2�0
I1�ka�
I1�kb�

	I1�kb�K1�ka� � I1�ka�K1�kb�
:

(5.12)

At long wavelengths, an expansion of Eq. (5.12) for kb�
1 yields the well-known long solenoid result given in
-12



PULSE LINE ION ACCELERATOR CONCEPT Phys. Rev. ST Accel. Beams 9, 060401 (2006)
Eq. (2.1). The opposite limit, namely ka� 1, yields

 L�k� � �n2a2�0=ka: (5.13)

The inductance per meter drops off at short wavelengths
(� 1=k) because the mutual coupling of flux from adjacent
helix turns decreases. A plot of L�k�=L0 vs ka for the case
a=b � 0:6 is presented in Fig. 19.

C. The electrostatic field and the capacitance per meter

Setting � � 0 on the tube wall at r � b, the solution of
Laplace’s equation for the electrostatic potential takes the
form
 

� � V
I0�kr�
I0�ka�

for r < a;

� � D
�
I0�kr�
I0�kb�

�
K0�kr�
K0�kb�

�
for r > a: (5.14)

The constantD is related to V by the continuity of� across
r � a. For the case where the region outside the helix has a
dielectric constant " while inside " � "0, the jump condi-
tion is "Er�r � a�� � "0Er�r � a�� � �=2�a. Relating
� to V identifies the generalized capacitance per meter
(after some algebra) as
 

C�k� � 2�"
I0�kb�

I0�ka�	I0�kb�K0�ka� � I0�ka�K0�kb�


� 2��"� "0�ka
I1�ka�
I0�ka�

: (5.15)

Once again at long wavelengths, an expansion of Eq. (5.15)
for kb� 1 yields the well-known result for the coax
capacitance per meter given in Eq. (2.2). The opposite limit
of short wavelengths, namely ka� 1, yields

 C � 2��"� "0�ka: (5.16)

The capacitance per meter increases at short wavelengths
(� k) because the voltage drop from the helix to the outer
wall is reduced by the adjacent surface charges of the
FIG. 20. (Color) Normalized capacitance per meter vs ka for
a=b � 0:6 and " � "0.
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opposite sign. A plot of C�k�=C0 vs ka for the case a=b �
0:6 and " � "0 is presented in Fig. 20.

D. Wave speed and impedance

The wave speed (both the phase velocity and the group
velocity) approaches a constant value at short wavelengths
equal to

 vc �
tan������������������������������

�0�"� "0�=2
p ; (5.17)

where tan� is the helix pitch. When the dielectric constant
is the same inside and outside the helix, the waves basically
follow the helical pitch of the wires in the short wavelength
limit, as might be expected physically. When the dielectric
constants are different, the average value governs the speed
of the wave at short wavelengths.

As an example, the phase velocity normalized by its long
wavelength limit for the case of the same dielectric con-
stant inside and out and a=b � 0:6 is presented in Fig. 21.

At long wavelengths, the dielectric constant inside the
helix does not enter into the capacitance or the wave speed.
Caporaso has noted that the asymptotic value of the wave
speed at long wavelengths and short wavelengths can turn
out to be the same with appropriate (and reasonable)
choices of the dielectric constants and the radius ratio
a=b, namely

 1�
"0

"
�
�1� a2=b2�

ln�b=a�
: (5.18)

For example, with a radius ratio a=b � 0:7, the Caporaso
condition is satisfied with " � 2:3 outside the helix (e.g.,
oil) and vacuum inside. One would expect that the disper-
sion of the wave would be minimized with this choice, but
the benefits that accrue from satisfying this criterion will
need more quantification before adopting it as an important
design constraint.

The wave impedance at short wavelengths drops off
�1=k in all cases. The matching of the wave at the termi-
FIG. 21. (Color) Normalized phase velocity vs ka for a=b � 0:6
and " � "0 (note the scale on the vertical axis starts at 0.6).
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FIG. 22. (Color) Normalized wave impedance vs ka for a=b �
0:6 and " � "0.
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nation end will therefore be more difficult to achieve if the
pulse has significant energy in the shorter wavelength
region (ka � 1). The impedance normalized by its long
wavelength limit for the case of the same dielectric con-
stant inside and out and a=b � 0:6 is presented in Fig. 22.

One of the most important reasons to limit the energy in
the shorter wavelength region is to avoid the drop off of the
axial field on axis when ka � 1. From Eq. (5.14) we see
that the radial dependence of the axial field is �I0�kr�, so
the field on axis relative to the field at the helix is
�1=I0�ka�. A plot of this ratio is presented in Fig. 23.

E. Traveling wave fields

In a forward moving traveling wave (beyond the exci-
tation region) where everything is a function of t� z=vc,
we see from Eq. (5.7) that the voltage and magnetic flux
have the same f�t� z=vc� dependence (are ‘‘in phase’’),
with peak values

 V � nvc�: (5.19)

Therefore, the average axial magnetic field inside the helix
(approximately constant in r at long wavelengths) is re-
FIG. 23. (Color) Axial electric field on axis divided by the axial
electric field at the helix vs ka.
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lated to the voltage as

 hBzi �
V

�a2nvc
: (5.20)

For the oil helix parameters discussed in Sec. II, for ex-
ample, a� 300 kV voltage pulse produces a� 300 G
pulsed magnetic field.

The axial electric field at the helix, Ez � �@V=@z, is of
course ‘‘90 degrees out of phase’’ in space and time with
the voltage and axial magnetic field.
VI. BEAM LOADING

In the previous sections we ignored the ion beam’s
contribution to the electromagnetic fields propagating on
the helix. The fields created by the ion beam are of course
an essential part of the energy conversion process, since the
electromagnetic power on the helix must diminish as the
ions accelerate. The beam-induced fields can also lead to
longitudinal bunching instabilities similar to the process
that leads to the amplification of microwave power in a
traveling wave tube (TWT) helix by an electron beam [3].

Particle simulation codes will be the main tool for a fully
self-consistent treatment of beam loading and bunching
instabilities at high ion beam intensities. In this introduc-
tion to the PLIA concept, we develop elementary models of
the beam loading phenomena to gain insight, and to obtain
‘‘worst case’’ estimates of the beam loading and instability
gain.

A. Elementary beam loading model

In the long wavelength limit, an ion beam with a line
charge density �b�z; t� induces an opposite image charge
on the inside of the helix. The current continuity equation
(2.4) then becomes [3]

 

@I
@z
� �C

@V
@t
�
@�b
@t

: (6.1)

In the nonrelativistic limit, the azimuthal magnetic field
created by the ion beam current can be neglected. The
derivation of the transmission line equations in Sec. V
makes it clear that the second transmission line equation
in the long wavelength limit, Eq. (2.3), is not modified by
the presence of the ion beam (in the nonrelativistic limit).

As a simple example of ion beam loading consider the
voltage and current induced on an untapered helix by an
ion beam pulse with a fixed axial profile moving at a
constant velocity vb. The ion beam line charge density is
then of the form �b�z; t� � �b�z� vbt�. The particular
solution of the transmission line equations (6.1) and (2.3)
using this ion beam source term in Eq. (6.1) is

 Vp�z; t� �
�b�z� vbt�

C�1� v2
c=v

2
b�

(6.2)

and
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FIG. 24. (Color) Snapshots of the beam loading voltage V
induced on the helix by a Gaussian shaped ion beam pulse
moving at a constant velocity vb � 0:98vc. The voltage is
normalized as Vn �

4 CV�z; t�=�b0, and the normalized distance
and time is zn �

4
2z=lb and tn �

4
2vb t=lb, respectively. The ion

beam line charge density is �b � �b0 exp � �zn � tn�
2.
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 Ip�z; t� �
vc
vb
Y0Vp�z; t�: (6.3)

Note that the ‘‘EM radiation’’ into the helix by the ion
beam pulse described by this solution has a singularity
when the ion velocity equals the circuit wave speed. If
the ion beam pulse enters the helix at z � 0 where V � 0
(transformer drive, for example), we must also include the
homogeneous solution to satisfy the boundary condition,
so

 V�z; t� �
1

C�1� v2
c=v

2
b�
	�b�t� z=vb� � �b�t� z=vc�
;

(6.4)

for z > 0. When the propagating wave reaches the end of
the helix, a negative propagating helix wave must be added
to Eq. (6.4) to satisfy the appropriate boundary condition at
that end.

In most of the acceleration scenarios described in
Sec. IV, the ion velocity is not in close synchronism with
the circuit velocity. An expansion of Eq. (6.4) for vb ! vc
should therefore represent an upper bound estimate of the
beam loading. This expansion yields a beam-induced volt-
age increasing linearly with distance,

 V � z
Z0

2

@�b
@t

: (6.5)

With a parabolic bunch shape the beam-induced voltage on
the helical line at the synchronous velocity varies linearly
across the bunch, so the (decelerating) axial electric field is
a constant over the ion bunch. Using �b � �b0�1� 4�z�
vbt�

2=l2b� in Eq. (6.5), we obtain

 �Ez�beam loading � �
4�b0

Cl2b
z: (6.6)

As an example of an intense ion beam pulse of interest
for HEDP studies, we take �b0 � 1 �C=m and lb � 0:2 m.
With C � 1=3 pf=m, a typical value for an oil dielectric
helix, the beam loading deceleration with the ion beam
remaining in synchronism with the circuit wave is
300 keV=m times the helix length z in meters. The decel-
eration from beam loading in this simplified limiting case
is therefore of order 10% or less of the (desired)
3–4 MeV=m acceleration gradient.

To illustrate the development of this asymptotic solu-
tion, ‘‘snapshots’’ at two different times of the voltage
induced on a helix by a Gaussian shaped ion beam pulse
moving at a constant velocity vb � 0:98vc are presented in
Fig. 24. The boundary condition on the helix voltage is
V � 0 at z � 0. Note that the main body of the pulse is
decelerated at a constant rate, but the ‘‘wings’’ of the ion
pulse are actually accelerated for the times and distances
illustrated.
060401
B. Generalization of the beam loading model to short
wavelengths

The formalism developed in Sec. V can be easily gen-
eralized to include the contribution of the ion beam to the
quasielectrostatic potential �. We use superposition and
write the overall potential as � � �c ��b, where �b is
the contribution of the ion beam and �c is the ‘‘circuit
field’’ described in Sec. V that satisfies the homogeneous
Laplace equation inside the helix and is related to the helix
voltage by Eq. (5.5). For �b, in general we must solve

 r2�b � � 	b�r; z; t�="0 (6.7)

inside the helix subject to the boundary condition �b�r �
a� � 0, where 	b�r; z; t� is the ion beam volume charge
density.

With an ion beam line charge density �b � exp��jkz�,
and assuming a relatively ‘‘thin’’ ion beam (kab < 1), the
induced line charge density on the inside of the helix by the
ion beam can be shown to be

 ��c�beam � ��bf��k�; (6.8)

where the ‘‘induced charge reduction factor’’ is defined as

 f��k�  ka
�
K1�ka� �

I1�ka�K0�ka�
I0�ka�

�
: (6.9)

At long wavelengths (ka < 1), an expansion of Eq. (6.9)
shows that f��k� ! 1 as it should. At short wavelengths,
the induced charge on the helix is reduced, eventually
falling to zero as exp��ka� for ka� 1.

A second reduction factor in the ion beam dynamics that
comes into play at short wavelengths is the ratio of the
circuit axial electric field at the beam to the axial field at
the helix. With a thin ion beam, the circuit axial electric
field that acts on the ions is
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 Ezc�r � 0� � �fV�k�
@V
@z
; (6.10)

where fV  1=I0�ka�, the function plotted in Fig. 23.

C. Longitudinal bunching instability
(‘‘TWT amplification’’)

In a traveling wave tube electron beam density and
velocity modulations are amplified by their interaction
with the traveling wave on the helix. The same mechanism
could in principle lead to growth of small perturbations in
the ion beam density in the PLIA concept. Since the ion
velocity in the PLIA does not remain in close synchronism
with the circuit wave, however, we do not expect this
mechanism to be a serious limitation. In this section, we
present without derivation the dispersion equation for an
infinitely long beam pulse in a constant velocity helix, and
estimate the gain in ‘‘worst case’’ scenarios.

We consider a thin ion beam with a constant (unper-
turbed) beam velocity and line charge density, and a con-
stant helix velocity. Small perturbations in the ion beam
density and velocity of the form exp�j!t� jkz� create
fields on the helix through the image charge source term
[Eq. (6.8)] in the generalized version of Eq. (6.1). These
fields act back on the ion beam through the axial electric
field of the circuit given by Eq. (6.10). For the axial space
charge fields of the ion beam itself we use the g-factor
description

 Ezb � �
g

4�"0

@�b
@z

; (6.11)

with g � 1� 2 ln�a=ab� for a thin beam. With these axial
forces and a ‘‘cold fluid’’ model of the ion beam, the
following dispersion equation can be derived:

 1 � Qb
k2v2

b

�!� kvb�2

�
1� �c

!2

�!2 � k2v2
c�

�
: (6.12)

Here

 Qb 
gq�b

4�"0Mv
2
b

(6.13)

is g times the dimensionless perveance, and

 �c�k�  f��k�fV�k�
�

4�"0

g C�k�

�
; (6.14)

with C�k� the generalized helix capacitance per meter
defined in Eq. (5.15).

As a typical example, we consider the oil helix discussed
in Sec. II with a helix radius of 8 cm, an outer tube radius of
12 cm, and a beam radius of order 2 cm (g� 3:8). With
ka < 1 (for the strongest interaction), �c � 0:1. With an
ion beam line charge density �b � 1=3 �C=m, Qb � 5�
10�3=Wb, where Wb is the ion beam energy in MeV. We
can therefore consider Qb and �c as small parameters in
060401
developing approximate solutions of the dispersion equa-
tion (6.12).

With very small Qb, the approximate solutions to the
dispersion equation are the fast and slow space charge
waves ! � kvb � 
, and the forward and backward trav-
eling circuit waves! � �kvc. Instability is predicted only
over a very narrow ion beam velocity range when the ions
are close to synchronism with the forward circuit wave,
given roughly by

 1<
vc
vb
< �1� �c�1=2: (6.15)

The maximum gain at synchronism is also very modest.
The dispersion equation in that regime can be approxi-
mated as a cubic (see Ref. [3]). When Q1=2

b < �c=2, the
steady state spatial growth rate is given by

 Im �k� � k

���
3
p

2

�
Qb�c

2

�
1=3
: (6.16)

With Qb � 10�3, �c � 10�1, and k� 1=a� 12 m�1, the
maximum gain at synchronism is only about one e-fold in
2.5 m. (The finite beam pulse length will also limit the
growth, since the unstable wave propagates at a slightly
different speed than the ion beam.) We therefore conclude
from these rough estimates that the TWT instability is
unlikely to be an important factor in the parameter regime
we are considering.
VII. CONCLUSIONS

The major attraction of the PLIA concept is the potential
for very low development and capital cost, however, real-
izing this potential will require a relatively high accelera-
tion gradient. Several factors will limit the acceleration
gradient:

1. The vacuum insulator must hold the pulsed axial
electric field without breakdown. We note that the helix
automatically provides ‘‘inductive grading’’ of this stress
and the typical time scales are a hundred nanoseconds or
less. We believe axial gradients on the vacuum insulator of
3 to 5 MV=m are reasonably conservative goals with a
proper design, and more sophisticated insulator designs
might substantially increase this vacuum gradient limit.

2. The peak voltage will be limited by breakdown in the
dielectric media [V0 < a ln�b=a�Ermax]; 10–20 MV=m
limits on Ermax should be reasonably conservative for oil
or epoxy media with pulse lengths of a microsecond or
less.

3. The ramp length is limited by the requirement for the
major fraction of the axial wave number spectra to be
confined to the ka < 1 region as discussed in Sec. V. As
a rough criterion, we will take this limit to be lc > �a.

The combination of limits 2 and 3 gives another limit
on the axial accelerating gradient, namely Ezmax �
Ermax	2 ln�b=a�=�
. With typical design choices of
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b=a� 1:5 and Ermax � 10–20 MV=m, this acceleration
gradient limit is also around 3–5 MV=m.

From the beam dynamics standpoint, axial electric fields
that can continuously accelerate and focus a slowly moving
ion bunch in a PLIA accelerator are attractive features
compared to induction architectures with widely separated
gaps. The simplicity and experimental flexibility of unta-
pered helical lines, with a broad range of operating modes
and energy gains of several MeV/meter with pulse power
voltages in the 200–300 keV range, are also attractive.
However, many practical problems like control of ion
losses, stray electrons, etc. will undoubtedly need to be
faced and resolved to realize its potential.
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