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Abstract

A self-consistent kinetic model is developed that describes the longitudinal
dynamics of a long, coasting beam propagating in straight (linear) geometry
in the z-direction in the smooth-focusing approximation. Making use of the
three-dimensional Vlasov-Maxwell equations, and integrating over the phase
space (x⊥,p⊥) transverse to beam propagation, a closed system of equations
is obtained for the nonlinear evolution of the longitudinal distribution function
Fb(z, pz, t) and average axial electric field 〈Es

z〉(z, t). The primary assumptions
in the present analysis are that the dependence on axial momentum pz of the
distribution function fb(x,p, t) is factorable, and that the transverse beam dy-
namics remains relatively quiescent (absence of transverse instability or beam
mismatch). The analysis is carried out correct to order k2

z r
2
w assuming slow

axial spatial variations with k2
z r

2
w � 1, where kz ∼ ∂/∂z is the inverse length

scale of axial variation in the line density, and rw is the radius of the conduct-
ing wall (assumed perfectly conducting). A closed expression for the average
longitudinal electric field 〈Es

z〉(z, t), expressed in terms of geometric factors,
the line density λb, and its derivatives ∂λb/∂z, · · ·, is presented for the class of
bell-shaped density profiles nb(r, z, t) = (λb/πr2b )f(r/rb), where f(r/rb) is the
density shape function, and rb is the beam edge radius. The general formalism
described in this paper is valid for the entire range of beam intensities (pro-
portional to λb) ranging from low-intensity, emittance-dominated beams, to
very-high-intensity, low-emittance beams. The properties of the solitary-wave
structures are also investigated.
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Theoretical Model and Assumptions

• Long coasting beam propagating in z-direction through perfectly con-
ducting cylinder with wall radius located at r = rw.

• The nonlinear Vlasov-Maxwell equations in the beam frame describing
the self-consistent nonlinear evolution of fb(x,p, t) and Es(x, t) can be
expressed as

∂fb

∂t
+ v · ∂fb

∂x
+ (Ftr

foc + ebE
s) · ∂fb

∂p
= 0,

and

∇ · Es = 4πeb

∫
d3pfb, ∇× Es = 0,

where v = p/mb is the (nonrelativistic) particle velocity in the beam
frame.
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Theoretical Model and Assumptions

• Two macroscopic moments of particular interest for a coasting beam
(long charge bunch) are the volume number density nb(x, y, z, t) and axial
line density λb(z, t) defined by

nb(x, t) =

∫
d3pfb(x,p, t) ,

λb(z, t) =

∫
dxdynb(x, t) =

∫
dxdy

∫
d3pfb.

Here,
∫
dxdy · · · = ∫ rw

0 drr
∫ 2π
0 dθ · · · denotes integration over the accessible

transverse configuration space.

• The nonlinear evolution of fb(x,p, t) is determined from

∂

∂t
fb + vz

∂

∂z
fb + v⊥ · ∂

∂x⊥
fb + (Ftr

foc + ebE⊥) · ∂

∂p⊥
fb + ebE

s
z

∂

∂pz
fb = 0.

Here, x⊥ = xêx + yêy and p⊥ = pxêx + pyêy denote the transverse phase
space variables, and v⊥ = p⊥/mb is the transverse particle velocity.
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Theoretical Model and Assumptions

• We introduce the transverse projection operator 〈· · ·〉⊥ defined by

〈· · ·〉⊥ =

∫
dxdy

∫
dpxdpy · · · ,

and the longitudinal distrbution function Fb(z, pz, t) defined by

Fb(z, pz, t) = 〈fb(x,p, t)〉⊥ =

∫
dxdy

∫
dpxdpyfb(x,p, t),

• Some straightforward integration by parts then gives for the nonlinear
evolution of Fb(z, pz, t)

∂

∂t
Fb + vz

∂

∂z
Fb + eb〈Es

z

∂

∂pz
fb〉⊥ = 0.
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Theoretical Model and Assumptions

• For ∇×Es 	 0, it follows that ∂Es
z/∂r = ∂Es

r/∂z and ∂Es
θ/∂z = r−1∂Es

z/∂θ.
Poisson’s equation for Es

z(r, θ, z, t) readily becomes

1

r

∂

∂r
r
∂

∂r
Es
z +

∂2

∂z2
Es
z +

1

r2
∂2

∂θ2
Es
z = 4πeb

∂

∂z
nb,

where nb(r, θ, z, t) =
∫
d3pfb(r, θ, z,p, t) is the number density of beam

particles. Note that λb(z, t) =
∫
dxdynb =

∫
dxdy

∫
d3pfb is related to the

longitudinal distribution function Fb(z, pz, t) by

λb(z, t) =

∫
dpzFb(z, pz, t).

• As a simplifying ansatz for closure, consistent with the assumption that
the transverse beam dynamics remains relatively quiescent, we make the
assumption that the dependence of fb(x,p, t) on axial momentum pz is
factorable according to

fb(x,p, t) = Gb(x⊥,p⊥, z, t)Fb(z, pz, t),

where Gb(x⊥,p⊥, z, t) and Fb(z, pz, t) are the transverse and longitudinal
distribution functions.
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Theoretical Model and Assumptions

• These assumptions and definitions readily give∫
dpxdpyGb(x⊥,p⊥, z, t) =

nb(x, t)

λb(z, t)
.

eb〈Es
z

∂

∂pz
fb〉⊥ = eb〈Es

z〉(z, t)
∂

∂pz
Fb(z, pz, t),

where the average axial electric field 〈Ez〉(z, t) is defined by

〈Es
z〉(z, t) ≡ 〈Es

z(x, t)Gb(x⊥,p⊥, z, t)〉⊥ =

∫
dxdyEz(x, t)

nb(x, t)

λb(z, t)
.
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Theoretical Model and Assumptions

• The final set of equations describing the nonlinear evolution of Fb(z, pz, t)
and 〈Es

z〉(z, t) are given by

∂

∂t
Fb + vz

∂

∂z
Fb + eb〈Es

z〉
∂

∂pz
Fb = 0,

and

〈Es
z〉 = 2π

∫ rw

0
drr

nb(r, z, t)

λb(z, t)
Es
z(r, z, t).

• Here, Es
z(r, z, t) is determined self-consistently in terms of the density

profile nb(r, z, t) from Poisson’s equation, which can be expressed as

1

r

∂

∂r
r
∂

∂r
Es
z +

∂2

∂z2
Es
z = 4πeb

∂

∂z
nb

for ∂/∂θ = 0. In addition, the line density λb(z, t) is related to Fb(z, pz, t)
and nb(r, z, t) by

λb(z, t) = 2π

∫ rw

0
drrnb(r, z, t) =

∫
dpzFb(z, pz, t).
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Theoretical Model and Assumptions

• For our purposes here, we specialize to the case where the z-variation
in Es

z(r, z, t) is slow in comparison with the r-variation. In particular,
denoting ∂/∂z ∼ L−1

z ∼ kz, it is assumed that

k2
z r

2
w � 1,

where rw is the conducting wall radius.

• Imposing the boundary condition Es
z(r = rw, z, t) = 0 at the perfecting

conducting wall, the formal solution can be expressed as

Es
z(r, z, t) = −4πeb

∫ rw

r

dr

r

∫ r

0
drr

(∂nb
∂z

− 1

4πeb

∂2E2
z

∂z2

)
,

where nb(r, z, t) is the density profile. The second term on the right-hand
side is small in comparison with the first term. Solving iteratively for
Es
z(r, z, t) then gives

Es
z(r, z, t) = −4πeb

∫ rw

r

dr

r

∫ r

0
drr

(∂nb
∂z

+

∫ rw

r

dr

r

∫ r

0
drr

∂3nb

∂z3

)

correct to 0(k2
z r

2
w).
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Evaluation of Average Longitudinal Electric
Field

• The average electric field 〈Es
z〉(z, t) =

∫
dxdyEz(x, t)

nb(x,t)
λb(z,t)

can then be

expressed as

〈Es
z〉 = 〈Es

z〉(1) + 〈Es
z〉(2),

where 〈Es
z〉(1) and 〈Es

z〉(2) are defined by

〈Es
z〉(1) = −2eb

∫ rw

0

dr

r

(
2π

∫ r

0
drr

nb

λb

) ∂
∂z

(
2π

∫ r

0
drr

nb

λb
· λb

)
,

and

〈Es
z〉(2) = −2eb

∫ rw

0

dr

r

(
2π

∫ r

0
drr

nb

λb

) ∂3

∂z3

∫ r

0
drr

∫ rw

r

dr

r

(
2π

∫ r

0
drr

nb

λb
· λb

)
.

These equations can be used to evaluate a closed expression for 〈Es
z〉 =

〈Es
z〉(1) + 〈Es

z〉(2) and the corresponding g-factors for a wide range of
choices of beam density profiles nb(r, z, t).
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Radial Force Balance

• For a broad range of choices of transverse quasi-equilibrium distributions
Gb(H⊥), radial force balance for a matched beam can be expressed as

ω2
β⊥R

2
b = λb

e2b
mb

+
1

4

ε̃2

R2
b

.

or equivalently,

R4
b −R2

λR
2
b −R4

ε = 0,

where

R2
λ =

λbe
2
b

mbω
2
β⊥

, R4
ε =

ε̃2

4ω2
β⊥
.

where R2
b = 〈r2〉 is the mean-square beam radius, and the scaled trans-

verse emittance ε̃ is defined by ε̃2/4R2
b = 〈v2

⊥〉.
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Radial Force Balance

• The physically acceptable solutions for R2
b is given by

R2
b =

1

2
[R2

λ + (R4
λ + 4R4

ε )
1/2].

Note that the mean-square beam radius R2
b depends on the line density

λb.

• For a low-intensity emittance-dominated beam with R2
λ � 2R2

ε , R
2
b re-

duces to the familiar result R2
b 	 R2

ε = ε̃/2ωβ⊥, which is independent of
λb.

• On the other hand, for a very-low-emittance, space-charge-dominated
beam with R2

λ � 2R2
ε , we obtain R2

b 	 R2
λ = λbe

2
b /mbω

2
β⊥, which is lin-

early proportional to the line density λb. A plot of R2
b /R

2
ε versus R2

λ/R
2
ε

illustrating this behavior is shown in the figure.

The Heavy Ion Fusion Science Virtual National Laboratory



Radial Force Balance

1 2 3 4

1

2

3

4

R  /2
λ R2

ε

R2
b

R2
ε

_

0
0

Plot of R2
b /R

2
ε versus R2

λ/R
2
ε obtained from the radial force balance equation.
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Fixed-Shape Density Profile
• We specialize to the class of fixed-shape density profiles nb(r, z, t) of the

form

nb =
{ λb

πr2b
f

(
r

rb

)
, 0 ≤ r < rb ,

0 , rb < r ≤ rw,

where f(r/rb) is a smooth function that depends on the scaled radial
variable r/rb.

• From λb = 2π
∫ rw
0 drrnb, we obtain the normalization condition∫ 1

0
dXXf(X) =

1

2
.

Similarly, from R2
b = 〈r2〉 = (2π

∫ rw
0 drrr2nb)/λb, we obtain

R2
b = ηbr

2
b

where the constant ηb is defined by

ηb = 2

∫ 1

0
dXXX2f(X).

• For specified shape function f(r/rb) the edge radius rb can be expressed
as

r2b =
1

2ηb
[R2

λ + (R4
λ + 4R4

ε )
1/2].



Fixed-Shape Density Profile

• One choice of shape profile of particular interest is

fn
( r
rb

)
= (n+ 1)

[
1 − r2

r2b

]n
, 0 ≤ r < rb,

where n = 0,1,2, · · · is a positive integer. For this choice profile we readily
obtain

ηb =
1

n+ 2
.

Here, the root-mean-square beam radius Rb is related to the edge radius
rb by R2

b = ηbr
2
b .

• The profile shape function f(r/rb) gives a wide range of density profile
peakedness, ranging from a step-function density profile (for n = 0) to
increasingly peaked profiles (for n = 1,2, · · ·).

0.5 1 1.5
0

1

2

3
r
br

_(   )n=2f

r
br

_(   )n=0fr/
r b

( 
  

  
)

nf

r/rb

0

Shape function profile fn(r/rb) plotted versus r/rb for n = 0 and n = 2.



Evaluation of 〈Esz〉(1)

• Because the beam edge radius rb generally depends on the line density
λb, it is clear that the radial integrations over nb/λb required to evaluate
〈Es

z〉(1) will also depend on λb.

• For the class of fixed-shape profiles considered here, some algebraic ma-
nipulation gives

〈Es
z〉(1) = −ebg0(λb) ∂

∂z
λb(z, t)

where the g0(λb) is defined by

g0(λb) = 
n
(r2w
r2b

)
+ αn − 1

2

R2
λ

[R4
λ + 4R4

ε ]
1/2

.

Here, R2
λ = λbe

2
b /mbω

2
β⊥ and R2

ε = ε̃/2ωβ⊥, and

αn =
n+1∑
m=1

(n+ 1)

m(m+ n+ 1)
.
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Evaluation of 〈Esz〉(1)

• The expression for g0(λb) clearly displays the dependence of g0 on the
line density λb. For a low-intensity, emittance-dominated beam with
R2
λ � 2R2

e , the final term is approximately −R2
λ/4R

2
ε , which represents a

negligibly small correction to 
n(r2w/r
2
b ) + αn.

• On the other hand, for a space-charge-dominated beam with R2
λ � 2R2

ε
the final term is approximately −1/2, representing a sizeable contribution
to the g0-factor. Indeed, for the special case of a step-function density
profile (n = 0 and α0 = 1/2) the second and third terms on the right-
hand side exactly cancel in the limit of a space-charge-dominated beam
(R2

λ � 2R2
ε ), and the g0-factor is given approximately by g0 	 
n(r2w/r

2
b )

as previously obtained by Reiser et al.
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Evaluation of 〈Esz〉(2) for Low Beam Intensity

• The second-order electric field 〈Es
z〉(2) is more difficult to calculate, even

for the class of fixed-shape density profiles considered here. As a first
example, we consider a low-intensity beam (R2

λ � 2R2
ε ), and treat nb/λb

as independent of λb.

• In this case, we find

〈Es
z〉(2) = −ebg2r2w

∂3λb

∂z3
,

where the g2-factor is defined by

g2 =
1

2

[
1 − (1 − βn)

r2b
r2w

− 1

n+ 2

r2b
r2w

n

(r2w
r2b

)]
.

Here, the constant βn is defined by

βn =
n+ 1

n+ 2
−

n+1∑
m=1

1

m(m+ n+ 2)
,

and r2b is related to the mean-square radius R2
b by R2

b = r2b /(n+ 2).
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Evaluation of 〈Esz〉(2) for Low Beam Intensity

• It is clear that the value of the geometric factor g2 exhibits a sensitive
dependence on profile shape. For example, it follows that β0 = 1/6 for a
step-function density profile (n = 0), whereas β1 = 19/60 for a parabolic
density profile (n = 1). Furthermore, it follows that g2 > 0, with g2 	 1/2
for r2b /r

2
w � 1 and g2 	 (1/2)βn for r2b /r

2
w → 1.

• For the special case of a step-function density profile (n = 0), note that
the g2-factor is given by

g2 =
1

2

[
1 − 5

6

r2b
r2w

− 1

2

r2b
r2w

n

(r2w
r2b

)]
.
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Evaluation of 〈Esz〉(2) for Step-Function Density
Profile

• For arbitrary beam intensity, we specialize to the case of a step-function
density profile (n = 0). Carrying out the integrations over r, we obtain

〈Es
z〉(2) = −1

2
ebr

2
w

{[
1 − r2b

r2w
− 1

2

r2b
r2w

n

(r2w
r2b

)]∂3λb

∂z3
− 1

4

n

(r2w
r2b

) ∂3

∂z3

(λbr2b
r2w

)

− 1

12

r4b
r4w

∂3

∂z3

(λbr2w
r2b

)
+

1

4

r2b
r2w

∂3

∂z3

[
λb
n

(r2w
r2b

)
+ λb

]}
.

Here, for a step-function density profile, r2b depends on λb through the

force-balance constraint r2b (λb) = R2
λ+(R4

λ+4R4
ε )

1/2, where R2
λ = λbe

2
b /mbω

2
β⊥

and R2
ε = ε̃/2ωβ⊥.
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Evaluation of 〈Esz〉(2) for Step-Function Density
Profile

• For step-function density profile, 〈Es
z〉(2) can generally be expressed as

〈Es
z〉(2) = −ebr2w

{
g̃2
∂3λb

∂z3
+ g̃3

(∂λb
∂z

)3
+ g̃4

∂λb

∂z

∂2λb

∂z2

}
,

where the coefficients g̃2, g̃3 and g̃4 depend on λb, ∂r2b /∂λb, etc.

• In the limit of a low-intensity beam (R2
λ � 2R2

ε ), where r2b 	 2R2
ε = const.

(independent of λb), we obtain the expected result

g̃2 = g2 , g̃3 = 0 , g̃4 = 0 .

• For a high-intensity, space-charge dominated beam (R2
λ � 2R2

ε ), it follows
that r2b 	 2R2

λ, and the coefficients g̃2, g̃3 and g̃4 can be approximated by

g̃2 =
1

8

[
4
(
1 − r2b

r2w

) − 3
r2b
r2w

n

(r2w
r2b

)]
, g̃3 =

r2b
8λ2

b r
2
w

g̃4 = − 3r2b
8λbr2w

[
1 + 2
n

(r2w
r2b

)]
.

• These results clearly display the strong dependence of 〈Es
z〉(2) on line

density λb.
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Longitudinal Vlasov-Maxwell Equations for Low
Beam Intensity

• We specialize to the low-intensity regime (R2
λ � 2R2

ε ) where the depen-
dence of the beam radius rb on line density λb can be neglected. In
this case, the Vlasov-Maxwell equations describing the evolution of the
longitudinal beam distribution Fb(z, pz, t) and line density λb(z, t) can be
expressed as

∂Fb

∂t
+ vz

∂Fb

∂z
+ eb〈Es

z〉
∂Fb

∂pz
= 0,

where

eb〈Es
z〉 = −e2b g0

∂λb

∂z
− e2b g2r

2
w

∂3λb

∂z3
.

• Here, the geometric factors g0 and g2 are defined by

g0 = 
n
(r2w
r2b

)
+ αn,

g2 =
1

2

[
1 − (1 − βn)

r2b
r2w

− 1

n+ 2

r2b
r2w

n

(r2w
r2b

)]
.
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Table of Values of g0 and g2

Profile Normalized Profile (0 ≤ r < rb) Geometric Factor Geometric Factor

Index n πr2
b nb
λb

= (n+ 1)
(
1 − r2

r2
b

)n
g0 = ln

(
r2
w

r2
b

)
+ αn g2 = 1

2

[
1 − (1 − βn)

r2
b

r2
w

− 1
n+2

r2
b

r2
w

ln
(
r2
w

r2
b

)]
0 1 ln

(
r2
w

r2
b

)
+ 1

2
1
2

[
1 − 5

6
r2
b

r2
w

− 1
2
r2
b

r2
w

ln
(
r2
w

r2
b

)]
1 2

(
1 − r2

w

r2
b

)
ln

(
r2
w

r2
b

)
+ 11

12
1
2

[
1 − 41

60
r2
b

r2
w

− 1
3
r2
b

r2
w

ln
(
r2
w

r2
b

)]

2 3
(
1 − r2

w

r2
b

)2
ln

(
r2
w

r2
b

)
+ 73

60
1
2

[
1 − 61

105
r2
b

r2
w

− 1
4
r2
b

r2
w

ln
(
r2
w

r2
b

)]

3 4
(
1 − r2

w

r2
b

)3
ln

(
r2
w

r2
b

)
+ 1217

840
1
2

[
1 − 1279

2520
r2
b

r2
w

− 1
5
r2
b

r2
w

ln
(
r2
w

r2
b

)]
∞ r2

b

R2
b

exp(− r2

R2
b

) ln
(

r2
w

2R2
b

)
+ γ 1

2

[
1 − (1 + γ)R

2
b

r2
w

− R2
b

r2
w

ln
(

r2
w

2R2
b

)]

Values of the geometric factors g0 and g2 for several density profile shapes
and low beam intensity (R2

λ � 2R2
ε ). Here, γ = 0.5772 is Euler’s constant.
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Linearized Vlasov-Maxwell Equations for Low
Beam Intensity

• Perturbations are taken to be of the form

δψ(z, t) = δψ̂ exp(ikzz − iωt),

where kz is the axial wavenumber, and ω is the complex oscillation fre-
quency, with Imω > 0 corresponding to instability (temporal growth).

• The linearized Vlasov equation gives

δFb = −kz(e2b g0 − e2b g2k
2
z r

2
w)
∂F 0

b /∂pz

ω − kzvz
δλb,

which relates the perturbed distribution function δFb to the perturbed line
density δλb. We introduce effective sound speeds ub0 and ub2 associated
with the geometric factors g0 and g1 defined by

u2
b0 =

g0e2b λb0

mb

, u2
b2 =

g2e2b λb0

mb

.

The dispersion relation then becoms

D(kz, ω) = 0,

where the dielectric function D(kz, ω) is defined by

D(kz, ω) = 1 + kz(u
2
b0 − k2

z r
2
wu

2
b2)

mb

λb0

∫ ∞

−∞
dpz

∂F 0
b /∂pz

ω − kzvz
.



Dispersion Relation for Low Beam Intensity

• Introducing the distribution function f0
b (pz) ≡ λ−1

b0 F
0
b (pz) normalized ac-

cording to
∫ ∞
−∞ dpzf0

b (pz) = 1, and integrating by parts with respect to

pz using ∂vz/∂pz = 1/mb, the dispersion relation D(kz, ω) = 0 is readily
expressed in the compact form

D(kz, ω) = 1 − k2
z (u

2
b0 − k2

z r
2
wu

2
b2)

∫ ∞

−∞

dpzf0
b (pz)

(ω − kzvz)2
= 0.

• The dispersion relation can be used to calculate the complex oscillation
frequency ω for a wide range of choices of beam distribution function
f0
b (pz). It is convenient to introduce the effective susceptibility χ(kz, ω)

with dimensions (frequency)−2 defined by

χ(kz, ω) =

∫ ∞

−∞

dpzf0
b (pz)

(ω − kzvz)2
.

The resulting expressions for χ(kz, ω) are displayed in Table 2 for various
choices of distribution function f0

b (pz) ranging from a cold distribution
function (Entry #1) to a Maxwellian distribution (Entry #5).
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Table of Susceptibilities

Entry Distribution Susceptibility
Number f0

b (pz) χ(kz, ω)
1 δ(pz)

1
ω2

2 f0
b =

{ 1
2mbvT

, |pz| < mbvT
0, |pz| > mbvT

1
(ω2−k2

z v
2
T)

3 mbvT
π

1
p2
z+m2

b v
2
T

1
(ω+i|kz|vT)2

4 2(mbvT)2

π
1

(p2
z+m2

b v
2
T)

2

1
(ω+i|kz|vT)2

[
1 + 2i|kz|vT

ω+i|kz|vT

]
5 1

mbvT
exp

(
− p2

z

m2
b v

2
T

)
− 2
k2
z v

2
T

[1 + ξZ(ξ)]

Susceptibility χ(kz, ω) for various choices of f0
b (pz).
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Example Corrsponding to Damped Sound Wave

• As a simple example, consider the Lorentzian distribution in Entry #3 of
Table II. Substituting the expression for χ(kz, ω), we obtain the dispersion
relation

(ω+ i|kz|uT)2 = k2
z (u

2
b0 − k2

z r
2
wu

2
b2).

• The solutions for k2
z r

2
w � 1 can be expressed as

Reω = ωr = ±kzub0
(
1 − 1

2
k2
z r

2
w

u2
b2

u2
b0

)
,

Imω = ωi = −|kz|uT .

• Because Imω = −|kz|uT < 0, note that the wave perturbation is damped
due to resonant wave-particle interactions (classical Landau damping)
for the choice of Lorentzian distribution function in Table II.
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Conclusions

• Self-consistent nonlinear kinetic model describing longitudinal beam dy-
namics has been developed for k2

z r
2
w < 1 and arbitrary beam intensity.

• Average longitudinal field 〈Es
z〉 exhibits a strong dependence on line den-

sity λb and shape of transverse density profile nb.

• Collective excitations have been explored at low beam intensity.

• Further analysis of collective excitations at high beam intensity is re-
quired.

The Heavy Ion Fusion Science Virtual National Laboratory



Background and References

[1] Allen, N, Brown and M. Reiser, Part. Accel. 45, 149 (1994).

[2] W. M. Sharp, A. Friedman and D. P. Grote, Fusion Engineering and
Design 32, 201 (1996).

[3] R. C. Davidson and E. A. Startsev, Phys. Rev. ST Accel. Beams 7,
024401 (2004).

[4] R. C. Davidson, Phys. Rev. ST Accel. Beams 7, 054402 (2004).

The Heavy Ion Fusion Science Virtual National Laboratory


