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Beam requirements
Method: bunching and transverse focusing
Beam diagnostics
Recent progress:

simultaneous and longitudinal compression, longitudinal
phase space measured
improved centroid control via beam steering dipoles;
enhanced plasma density in the path of the beam

Next steps toward higher beam intensity & target experiments
greater axial compression via a longer-duration velocity
ramp
time-dependent focusing elements to correct chromatic
aberrations

Outline
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Before WDM user facility, we plan an  intermediate step: NDCX-2
Beam requirements: intensity, short pulse (τbeam ~ 1 ns < τhydro)

Solenoid
matching

Alternative:
E= 3 MeV Li+

Final focus: ~15 J/cm2 beam deposition for T ≈ 1 eV, nb-max ≈ 4x1013/cm3.
Challenges: source, beam formation, φbeam at injection, Tll

induction
acceleration

Neutralized
compression

Final
focus
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Approach: High-intensity in a short pulse via
beam bunching and transverse focusing

The time-dependent velocity ramp, v(t), that compresses the beam at
a downstream distance L:
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Increasing velocity tilt increases the peak current.  Chromatic
effects --> larger spot radius.

Transversely, spot radius determined
by emittance + chromatic aberrations

Higher momentum
trajectory

Lower momentum
trajectory Envelope

(average)

Minimum 
Spot radius

Tilt 
imposed

z

ΔVDrift
Compression

Length of beam prior to compression

Length of beam after compression

Δvtilt

Velocity
spread
before
compression

Longitudinally, phase space undergoes
rotation during drift compression;
<(δv/v)2>1/2 limits final bunch length
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Δ = δv/v, eφ = beam energy, f = final solenoid focal length

Energy deposition (J/cm2):



The Heavy Ion Fusion Virtual National Laboratory 7

On NDCX-1, we recently demonstrated simultaneous
transverse focusing and longitudinal compression

 

Ideal vs Experimental Velocity Tilt
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Objectives: Preservation of low emittance, plasma
column with np > nb,
(nb-init ≈ 109 /cm3

,
nbmax ≈ 1012 /cm3 now, later, ≈ 1013 /cm3)

Ei = 0.3 MeV K+

Ii = 25 mA

ideal vs Experimental IBM waveform

IBM

Matching solenoids
& dipoles

K+ injector 
E = 280-350 keV

I = 26-37 mA
FEPS
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Present configuration of the experiment

Injector

Target chamber,
beam diagnostics

Matching solenoids
& dipoles

Focusing solenoid

IBM & FEPS

Beam diagnostics

New: steering dipoles, focusing solenoid (8T), target chamber, more diagnostics
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To measure the bunched current waveform, the
Faraday cup needs:
Fast time response (~1 ns)
Immunity from background neutralizing
plasma
2 hole plates, closely spaced for fast
response.
Hole pitch & diameter small → blocks most
of the plasma

Front plate

bias plate
collector

0V
-150<V<-50

50<V<-150

plasma

K+ beam

vb = 1.2 mm/ns

Hole plate front view

zoomed 
view
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Beam diagnostics - improved Fast Faraday Cup:
lower noise and easier to modify

 Metal enclosure for shielding.
 Easier alignment of front hole

plate to middle (bias) hole
plate.

 Design enables variation of
gaps between hole plates, and
hole plate transparency.

MARX

Collector
Bias plate
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Beam diagnostics in the target chamber:
scintillator + CCD or streak camera, photodiode

Biased hole plate
scintillator

V≈-300 V

Al2O3

4 Al plasma
sources

<Z> = 1.7

K+ beam

vb = 1.2 mm/ns

PI-MAX CCD camera

window

10mm

10ns gate

10-20 pixels/mm typ.

photodiode

Streak camera

Optical fiber

Al2O3 wafer with hole plate:
Hole plate to
 reduce beam flux: less damage
 prevent charge buildup.

Image intensified CCD camera
using 10 < Δt <500 ns gate.
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Beam diagnostics in the target chamber:
Fast faraday cup

Biased hole plate
collector

4 Al plasma
sources

<Z> = 1.7

K+ beam

vb = 1.2 mm/ns

window

front hole plate Example waveform

Ibeam = Icollector x (transparency)-1

         = 35 mA x          44                = 1.5 A peak.
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Minimum spot size @ same time as peak compression

  

2X reduction in the spot size (4X increase in beam intensity) brings the peak beam density to the range
nb ≈1011-1012 cm-3.
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simultaneous longitudinal compression and
transverse focusing, compared to simulation.

7.5 mr
13.5 mr

Net defocusing in gap due to energy change, Er
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Uncompressed

+ 2.55mm

+ 1.71mm

Uncompressed
radii

Preliminary analysis of latest measurements
show a smaller focused spot size

10ns gate

6mm

10ns gate

~10 mJ/cm2
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Improved focusing can be expected due to…

Higher plasma density near the focal plane.
5 Tesla --> 8 Tesla final focusing solenoid.

We need to compare models and experiments.

FWHM 2.4ns
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A new bunching module will increase the voltage
amplitude and voltage ramp duration

12 --> 20 induction cores
--> higher ΔVΔt

Gap geometry is flexible;
opportunity to
optimize.

V 
(k

V)

250x compression (model)

60x compression 
measured, modeled

125x compression 
(model)

Beam experiments in 2008.

etraps FEPS

FEPS = ferro-electric plasma source
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New drift compression section, L=2.88 m,
Longer to cap ΔVpeak & chromatic effects

It is advantageous to lengthen the drift compression section by 1.44 m via
extension of the FEPS
Po-5 Efthimion et al., Ferro electric plasma source

2.24 m
Ferroelectric plasma source

L = 2.88 m
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chromatic effects - as represented by slices of
beam of different energy

Comparison of LSP, the envelope-slice model, and the simple analytic model.
(a) no final focusing solenoid.
(b) New IBM, the final focusing solenoid (Bmax = 8 Tesla) Ldrift =144 cm, present setup
(c) with twice the drift compression length (L=288 cm) as the present setup.

FF 

(T) t (ns)

initial 

kinetic 

energy 

(keV)

a(z=284) 

(mm)

a' 

(mrad)

Current 

at focus 

(Amps)

 pulse 

width @ 

focus 

(ns)

E (J/cm2) 

envelope

E (J/cm2) 

LSP2

E (J/cm2) 

(Eq. 1)

a) 0 200 300 21.50 -23.80 3.08 1.69 0.06

b) 8 282 300 9.55 -9.82 4.01 1.83 0.39 0.30 0.59

c) 8 400 300 14.40 -13.70 3.23 3.22 0.82 0.69 0.94

etraps

IBM
Velocity ramp

Drift compression in Ferro-electric plasma source

8 T solenoid
FCAPS plasma
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Alignment: Beam centroid corrections are required to minimize
aberrations in IBM gap & for beam position control at the target
plane

Alignment survey: mechanical structure aligned within 1 mm.
Manufacturing imperfections (coil w.r.t support structure) not included.
Observe  < 5 mm, <10 mrad offsets at exit of 4 solenoid matching
section without steering dipole correction.
We can correct the centroid empirically with steering dipoles at
the exit of the solenoid matching section.

3 dipole pairs between solenoids

Imax ~ 200 A
Bmax ~ 0.5 kG

Beam

Y dipole
(inside)
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All

Errors:

Solenoids: Dispacements +tilts
Solenoids: tilts only

Solenoids: displacements only.
Initial conditions only (ion source)

Average centroid orbit

Next step: Minimization of the centroid betatron
amplitude. Requires knowledge of the absolute offsets.
Ensemble of 10,000 random error combinations to estimate sensitivity, Lund, Po-24

Beam centroid measured without dipoles will be used to solve for beamline offsets

Beam distribution J(x,y) at exit
of 4 solenoid matching section.
We plan more measurements

to verify this method

1    2     3     4

5    6    7    8

9  10
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Cathodic arc and ferro-electric plasma sources for
neutralized drift compression.

Filtered cathode arc plasma
source (FCAPS)

Injection from end into
region upstream of target
plane and into final focusing
solenoid

ne ≈ 5 x 1011  cm-3 measured
with “bent” filters designed to
limit neutral particle flux.

barium titanate
ceramic ring.

Ferro-electric plasma source
(FEPS)

• Generated from cylindrical
surface

• Installed downstream of IBM
• ne ≈ 2-8 x 1010  cm-3

BEAM 

Both approaches are not yet optimized, higher density possible.
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Warp can now simulate injection from Cathodic-
Arc Plasma Sources

t = 1.2 µs                         t = 4.5 µs

Next :
-comparison of runs with Eddy fields calculated from transient calculation in Ansys.
-Implicit model: hope for at least 10x speed-up in computation time.
-Fields from filters
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Big picture, 45-degree view, plasma sources in plane
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45 degree view -- zoomed field lines only

Plasma 
sources

target

Solenoid coil
B lines
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Improved plasma source orientation

Plasma density
> 1013 / cm3 after
modifications
to FCAPS:
straight filters,
2 --> 4 sources,
increased Idischarge
(Roy, Mo-9)

Field geometry modifications
under consideration to
increase plasma density in
region just upstream of the
target plane.

Final focus solenoid (8
Tesla, 10-cm coil) to reduce

focal spot size.
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Correction of chromatic aberrations

Time dependent defocusing in bunching module,
chromatic effects.
Ramped electric quadrupole or Einzel lens correction,
close to the IBM. Example:

V(t) = [100 kV](t/1µs)1/2

4 periods, P = 6 cm,
R = 2 cm
300 kV K+

Modulates envelope
by ≈20 mr in 1µs.

Will also explore lattice modifications static elements.
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Summary

next steps toward higher focused beam intensity
greater axial compression via a higher ∆v/v velocity
ramp
improved centroid control via beam steering
dipoles;
time-dependent focusing elements to correct
considerable chromatic aberrations
enhanced plasma density in the path of the beam


