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Our starting point is augmenting molecular dynamics to model  
hot dense, burning radiative plasma:   Overview 
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! Microscopic processes are a mix of  classical and quantum physics 

We want to develop and compare mixed quantum/classical simulations  
to analytic models and experiment* 

* = e.g. stopping power in WDM 

Long range = incoherent, classical     λdeBroglie < rs  
Short range = coherent, quantum      Vcoul(r->0) > kT ✓MD is ideally suited for fully-ionized,  nondegenerate plasma:   

   Coulomb interaction is included to all orders 

Macroscopic   Microscopic 
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We must go beyond classical MD while assessing the reliability  
of  our modifications:           Specifics 

1.  High-temperature limit allows classical trajectories (Coulomb molecular dynamics) 

2.  High-Z impurities introduce strong coupling physics, QM bound states * 

1.  Quantum phenomena will be introduced via coextensive Monte Carlo models 

1.  Bound core states 

2.  dense plasma effects, e.g. continuum lowering 

3.  Dynamical core excitation, ionization,  
recombination 

4. Compare to experiments 

a)  Jupiter Laser Facility proton stopping in warm dense C * 

* = stopping work to date 
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3. Compare to theory, analytic models  

a)  Like-charged projectiles in OCP* 

b)  Projectiles in H, no bound states  (energy split) 

c)  Targets with high-Z impurities, and WDM* (atomic physics) Microscopic processes for  
the stopping problem 



We Are Interested In Two Issues for Stopping 

1.  What are the current limitations for kinetic theories of  stopping power?         (HDRP) 

a)  Strong, correlated collision problem:  
strong beam-target interaction with collective excitations is an unsolved problem 

b)  Here, simulations provide non-perturbative (numerically converged) results,  
using idealized models that have no uncertainties (e.g., repulsive Coulombic OCP)  

2.  What is the stopping behavior in real matter?   

a)  strong electron-electron interactions (dynamical local field corrections) (WDM) 

b)  degeneracy, Pauli blocking in electronic subsystem                                 (WDM) 

c)  strong ion-ion interactions (strong coupling liquid)                    (WDM, HDRP) 

d)  strong electron-ion interactions (bound states, excitations, ionization by projectile) 

          (WDM, HDRP) 



Issue #1: Tests of  Kinetic Theories 

•  Many stopping power models (e.g., Lindhard) are based on perturbation theory 

•  Classical model is most difficult (quantum stopping naturally convergent) 

•  Here, we perform simulations using pure classical dynamics  

 - in regimes where perturbation theory fails 

        - disallowing formation of  any bound states in target or with projectile   

A great deal has been learned from previous studies, 
but state of  the art MD has improved meanwhile  

Lindhard way off. 



MD for OCP:   Coulomb interactions can be evaluated  
 effectively free from finite system-size errors. 
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dE/dx vs. v  for  Z=-10 in e- gas, Γ=1 

Our finite size effects are under control 

 (e.g., dE/dx for 64K particles  is similar to 2M  )


Most early MD used 103-105 particles

We use 6X104 and 2X106, up to 2X109 charged particles 


2M 

64
K 

250K 

We apply a weak thermostat to the target to control heating.

A fast projectile travels 1000-2000 Å in relaxation time τ 

v(t) vs. system size  



OCP vs. Theoretical Models, dielectric formulation 
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There are analytic expressions for stopping and straggling in the linear response regime  
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RPA and local-field corrected version have been studied 

High temperature (classical limits), relevant to Coulombic MD 

Lindhard way off. 

Weak-coupling, linear response is 
inadequate for large Z  

Gericke, private comm. 

(Integrals of  Vcoul  are not convergent here) 



OCP vs. Theoretical Models:  
The combined method is well-known 
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Strong coupling scattering can be evaluated by the T-matrix for static screening   

In terms of  thermal deBroglie wave length Λ, transport cross section Q, …  

Finally, static higher-orders, and dynamic linear stopping can be combined, 
Gericke and Schlanges, Morawetz and Ropke, (Gould and deWitt) 
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MD simulations provide fluctuation statistics 
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MD includes detailed statistics on scattering, transport and correlation 
functions 

 e.g., on straggling and blooming 
We are in the process of comparing to analytic models 

vx 

vy 

dE/dx vs. v for  Z=-2 in e- gas, Γ=1 

Avg~0 

Finite size effects may be more severe for fluctuations 
from the average  

Hard collisions 
contribute to straggling 
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OCP vs. Theoretical Models 

Lindhard way off. 

Gericke, private comm. 

Stopping includes linear drag regime  
for slow projectiles 

Peak energy transfer for v ~ vth   

Asymptotic fast projectile stopping  
~ ln v/v2 

We are working on local field corrected dielectric response calculations 
(Ichimaru, “fluctuation approach”) 

T-matrix with velocity-dependent screening also gives good agreement 
for strong coupling  



MD simulations include details of the velocity-dependent  
dynamical screening in strong coupling 

v/vth=4.3 Pure repulsive Coulomb, Z=-10, Γ=1 OCP 

Time averaged over 102 fs, in strong-coupling limit 

Current density reveals both collective turbulence and single particle excitations 

ρ jz 



Issue #2: Atomic physics and degeneracy effects 
in Warm Dense Matter 

•  Stopping power in warm dense matter is a difficult problem 
•  Strong coupling among all species, quantum mechanics manifests in: 

1.   Screening 
2.   Atomic states in target 
3.   Pauli blocking in bound-free, free-free excitations by projectile 
4.  Transient bound states of  projectile   

Thus, we are in a serious bind: we need to solve the dynamical quantum many-body problem! 

Our strategy: 
•  Assume long-range dynamics are dominated by classical Coulomb scattering  
   (e.g., the plasmon energy is correctly predicted by classical physics) 
•  Assume that the remainder is described by short-range quantum corrections 
   use effective potentials for particle trajectories and Monte Carlo for quantum transitions 

This creates a viable “dynamical QMD” that, while being imperfect, is tractable, testable, and improvable. 



What is our stopping model for real ions? 

For a first look, we just want to examine computational feasibility  

We have applied classical MD to stopping for a C6+ model with classical bound electrons 

We replace singular 1/r binding with an effective quantum-corrected electron-ion potential 
 use existing high temperature potentials, sufficient to prevent singular binding 

MD timestep is set by fastest particle, usually the projectile 

 This problem is not appreciably more difficult to simulate than OCP 

We are modifying the effective potential and core dynamics subsequently 

Theory goal is a method with quantum bound states and transitions,  
plus classical nondegenerate free electrons 



What does classical dynamics predict for real ions? 

Simulations are qualitatively consistent with expectations 
Suggest that quantum atomic corrections will be manageable 

At 50+ eV free electrons are not degenerate 
Corrections will mainly be to core dynamics and 
scattering properties 

At 20 eV, degeneracy effects are important 
These are not included in classical free electron 
trajectories 

dE/dx 

E.g., simulate 4000 C6+ atoms, 24000 electrons 
Graphite density, 2.26 g/cm3 

Single incident proton projectile 

We tried several models for C ions, treated as point effective charges 
 This includes modeling C3+ with a rigid core as a point charge 
 and modeling fully stripped C with classically-bound electrons 

SRIM dE/dx dataset did  
not include dropoff  
for small v  



Proton in stopping in warm C is underestimated  
compared to SRIM, for cold C. 

Estimated spectrum from ‘Shot 54’: 
Simulated transmission through 2.5, 6.0, 11.5, 17, 24 µm C foil 
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Transverse δv 
 δt = 5000 timesteps 

500keV proton loses 10% energy in 1µm.    
Variance in transverse v equals a 1-2° deflection. 

2MeV proton loses 1% energy in 1µm, sees a 0.2° deflection. 

SRIM dE/dx dataset did  
not include dropoff  
for small v  

Blooming is prominent 



We are performing experiments on C in the WDM regime 

Experimental goal is warm dense regime, nondegenerate free electrons,  
simple core states, e.g. He-like carbon 

•  Protons heat edge-on 
–  Typical heating energy~130 J 
–  Typical probe energy~20 J 

•  Proton spectrometer measures 
heating spectrum 

–  Spectrum is used to infer temperature 

•  FDI measures expansion of  
critical surface 

–  Expansion velocity is used to infer 
temperature 



The ionization dynamics of the carbon is critical to 
understanding the stopping power 
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n
∑  +  Z Za( ) lnΛ f

B = 4πe4NZa mV
2 ,  Λ b n = 2mV 2 Iz n ,   Λ f = 2mV 2 I f ,  Za = atomic number 

N = plasma density,  V = proton velocity,  Z = average ionization
Iz n = ionization potential,  I f =  Ze2 λD

• Ionization balance calculated using FLYCHK 
• Solid density 
• Stewart-Pyatt continuum lowering 

•   

• For our plasma we have: 

€ 

Γii ≈ 5, Γie ≈ 2, ϑ Deg =
θFermi

θThermal

≈1.19

Free electron stopping is in a 
partially degenerate gas 

• The bound electron stopping is 
dominated by the C2+ charge state. 



Warm Dense Carbon Results: Classical MD 

For the DunnBroyles-Deutsch potential: 
Start with ionized C 50eV run to equilibrium, what is Z(t) 
Use 2 definitions for bound state: instantaneous negative energy or residence time 
(orbit time) 
Classical dynamics predicts too fast recombination rate, equilibrium <Z> ~ 4.5 
Cretin dense plasma simulation predicts slower recombination to <Z> ~3.5 

H.A. Scott, 
Journal of Quantitative Spectroscopy & 
Radiative Transfer 71 (2001) 689–701 

Cretin—a radiative transfer capability 
 for laboratory plasmas 

Classical MD predicts the 
wrong eigenspectrum – 
No gap between  cores and free 
electrons 

<Z>~3.6 

<Z>~4.5  



Warm Dense Carbon Results  
Monte Carlo atomic physics 

First test of  the Monte Carlo core dynamics: approach to equilibrium 
Start from near-neutral atoms, use free atom core levels  

Monte Carlo Kinetics and equilibrium are consistent with models 

TF 

ddcMD <Z> lacks  
continuum lowering 
in this simulation 



1) Quantum Mechanics Via Improved Statistical Potentials 

We have attractive e-i forces, but cannot have a 1/r potential  for r->0! 

Method of  Statistical Potentials (SPs): 

1.  Begin with exact QM result for equilibrium behavior  
(i.e., density correlation functions, thermodynamics/EOS) 

2.  Derive a classical potential to duplicate the QM result: 

  Now the QM partition function can be sampled using classical molecular dynamics 
algorithms 

3.  Finally, we assume that the equilibrium sampling can be used in a real dynamics 

  long-range classical part still “exact” 

  the QM “corrections” only truly accurate near equilibrium (structure/screening) 

Consider the (exact) partition function in the 
grand canonical ensemble:
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  manipulate QM density matrix to have this 
functional form 

  check accuracy with comparison with PIMC 



Existing potentials treat equilibrium correlations in hydrogen 
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Existing potentials treat equilibrium correlations in hydrogen 

np=ne=1.25e24/cc 
T=0.250keV 
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We are deriving improved potentials from fully quantum 
path integral Monte Carlo calculations 

New potentials correctly account for the density from quantum bound states, by design 

We are in the process of  integrating these potentials into large scale MD 



What should the effective scattering cross sections be? 

Trajectories for Coulomb (e-p) scattering: 

time-dependent variational 
principle (i.e., WPMD) 

“exact” (i.e., numerical 
solution of  Schrödinger 

equation) 

classical 

Indeed, QM mainly weakens the 
Coulomb interaction at short range. 

We have confirmed these results using 
different numerical methods (MPSoft), 

and different formalisms (Wigner 
trajectories) 

What do we expect? 

 We must capture this short range behavior 

N.B.:  This is just Ehrenfest’s theorem in action: 

m
d 2 r̂
dt 2

= − ∇U r̂( )

= − d 3r ψ (r,t)∫
2
∇U(r)

≠ −∇U r̂( )

Centroid of  QM trajectory does not 
follow CM trajectory  
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Scattering is being compared to full quantum simulations 

MP/SOFT method 

Trotter expansion: 
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SINGLE CLASSICAL TRAJECTORIES 

•  No problems with high initial momenta, velocities are correct. 

•  Single classical particles qualitatively different at small impact params. 

― quantum 
― single classical 
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     INITIAL KE=0.5keV  IMPACT  PARAMETER=0.0545 Å 
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density 

Going beyond expectation values, 
Classical behavior can be compared to quantum distributions 

Quantum distribution is modeled by a cloud of  particles with initial density|Ψ|2    
e.g., using 15625 particles: 
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Classical density moves ahead of  quantum density. 

PLOT OF 

Cubic element of  125 protons liquid structure, fixed coordinates, zero temperature 
Electron Ek  = 0.5keV, initial impact parameter = 0Å 

Coherent multiple scattering can alter propagation 

We also have wave packet MD methods to apply. 



1. Directly applied classical MD to model problems, “exact” numerical calculations 

2. Used existing quantum corrected potentials to avoid the classical Coulomb catastrophe 
 apply to opposite-charged problems, neutral plasmas, e.g. C  (or H) 

3. Conducted initial stopping experiments 

4. Developed improved quantum atomic dynamics 
 cross sections, detailed balance, equilibria 

5. Developed advanced quantum potentials for near equilibrium conditions 

… 

6. Integrate corrections into overall MD, assess accuracy  

Path so far 


