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Organization of Presentation
• The presence of warm dense matter in laser 

materials processing.
• Frequently present

• Putting warm dense matter to work in laser 
materials processing.

– A role of warm dense matter in the 
drilling of high aspect ratio holes.

• A proposed ion beam experiment in 
structured materials produced by laser 
micromachining.

– The production and probing of 
“quasistatic” expanded states of matter.

• Conclusions



The advent of industrialized short pulsed (fs to ns) 
lasers brings WMD to the shop floor. 

• Hydrocode provides insight.

• Extreme (for LMP) conditions of 
temperature and pressure.
– T=300,000 K at pulse peak.
– P=60,000 Atmospheres (seen 

by VISAR)
• Units:

– Position in m
– Temperature in eV (1eV=11,000 K)
– Pressure in kBar (1kBar=1,000 

atmospheres)
– Density in kg/m3

– Laser Energy Deposition in 1016 W/m3

• Shows the expected self-
modulation due to interference 
between the incident and 
reflected waves.



Laser-matter interaction hydrocode simulations reveal the 
extent of WDM in laser materials processing

• Finite-element fluid 
model calculates the 
evolution of each 
individual element.

• Each individual 
element represents a 
layer of target 
material. 

• We can track the 
change of velocity, 
density, temperature, 
etc.

Representation 
of target at t=0

Representation of target 
once heated by laser (front 
cells expand and move 
outward).

laser



Laser machining does not stop with the laser pulse: 
WDM can be ejected and lingers after the laser pulse.

• Laser materials processing abhors ablation products.
– Ablated material has to go somewhere.

• Following series show ρ, T for various pulse widths from 
1 ps to 100 ns.
– 10 ns to 100 ns: boiling material off
– 1 ns to 10 ns: plasma then denser, cooler phase.
– 1 ps to 30 ps: plasma then by material ejection due to 

post-compression target relaxation.

• Fresh WDM can be ejected long after the laser pulse
– LMP does not stop with the laser pulse…



Evolution of target for various depths from surface for a 10 ns FWHM 
pulse at ~200 J/cm2 : lots of plasma and some dense, warm matter
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Same energy, 10X shorter (1 ns FWHM) pulse: less plasma, more WDM. 
More significant WDM “hanging around” target, emerging after pulse
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And 10X shorter to 100 ps FWHM but same energy: still plasma coupling , 
now emergence of prominent WDM from post-compression release

Laser Pulse



10X shorter again to 10 ps FWHM, at same energy: less plasma but 
lots of WDM emerging after pulse

( )2
12105 cm

W×

Laser Pulse Time



Again 10X shorter to 1 ps FWHM, at same energy: 

Laser Pulse



The presence of this hot matter generally has negative 
implications for hole drilling (for example).
• Plasma related:

– Radial hole expansion by 
hot plasma

– Friction encountered by 
plasma exiting hole

– Plasma thermal 
deposition in bore walls

• Optical phenomena:
– Waveguiding
– Propagation losses

• Redeposition:
– From plasma
– From liquid and vapor

Redeposition and plasma heating

Beam propagation losses
radial 
plasma 
ablation

Mode coupling
10 eV

5-50 kBar

Laser deposition

We only begin 
to grasp some 
of these 
processes.



In high aspect ratio laser drilling the plasmas and 
other ejecta matter.

• In a small and confined 
hole, more highly energetic 
plasmas can enlarge the 
hole.

• Redeposition can block the 
hole.

• Short pulse lasers are not a 
panacea. 
– Equivalent energies 

produce very high energy 
density.

– Coupling to higher densities 
and changing reflectivity



Increasing energy density increases size beyond what 
can be accounted for optically (nanosecond example)

• Tests in 150 um thick Al 
foil reveal that the hole 
size depends on the 
laser intensity.
– Drilling time is constant 

at 2000 double pulse 
laser shots.

– Focal spot diameter 
<6um

– Low taper in holes.

– Ablation plasma 
causes radial ablation

Laser direction

40 uJ/laser shot

15 um diameter

20 uJ/laser shot

10 um diameter

10 uJ/laser shot

5 um diameter



We can manipulate warm dense matter to improve 
the situation.

• Substantial effort is often 
made to reduce laser-
plasma interaction
– Femtosecond lasers
– Gas assist jets

• Double pulse format uses 
ablation products.
– Nanosecond lasers

• Improvement in speed 
and quality.

Δt > 100 μs

Δt < 1 μs

Conventional:

Double pulse 
for drilling:

1st pulse        2nd pulse

1 double 
pulse shot



Why use double pulse ?   Double pulse machining improves 
the speed of percussion drilling.

• Enhances basic material removal rate.
• Improves ejection of ablation products

• laser: 
τ=4 ns, 
λ=532 nm, 
up to 3 mJ/pulse

2
119 10105 cm

W
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Why use double pulse ?      Double Pulse machining improves 
the quality of percussion drilled holes.

• Double pulse format can reliably percussion 
drill high aspect holes.

800 shots

Single pulse

1 mm thick 
stainless steel. 

200 shots

Double 
pulse 
format



Basic behavior of double pulse machining forms a 
basis for a phenomenological model.

• 1st pulse produces:
– Hot plasma and post-shot ejecta
– 30-60 kBar pressure

• 2nd pulse couples to residual 
WDM:  the “dark cloud” and not 
the solid underneath
– Hot but enlarged plasma
– 5-20 kBar pressure
– Better and predictable holes
– Much faster:

• Weakly dependent on hole depth in 
steel.

• Strongly dependent on hole depth in 
aluminum.

• 2 mechanisms at work.

11 ns post-shot: 
plasma plume

37 ns post-shot: 
“stationary” dark 
material

30 seconds post-shot: 
laser damage.



Phenomenological model: improved ablation 
and inhibited redeposition.

• Stage 1:    1st laser pulse.
– Produces high (30-50 kBar) pressures
– Inhibits ablation.

• Stage 2:    Time delay.
– Boiling and evaporation continues.
– Ablation plasma dissipates
– “Low” temperature cloud remains.

• Stage 3:    2nd laser pulse
– Heats dark cloud (10-20 eV)
– Interacts with larger volume.
– Produces thermal heat source without 

confining pressure (PV=nRT)
– Ablation proceeds rapidly (>6X)
– Inhibits redeposition

We can manipulate these 
processes.



We are learning to simulate what the second laser 
pulse hits and what state the laser thus creates

• Ionization for the 1/100th-1/5th solid density
• Te from .3 eV to 20 eV.
• Permits us to model the deposition of the 

secondary pulse in the low temperature dark 
cloud.



Underlying Mechanism of DP Laser Drilling May Involve 
Manipulating the Process Paths in the ρ-T Phase Diagram
• Process paths for the expanding warm-dense matter following first laser strike on 
Aluminum, Φlaser ~ 10 -100 J/cm2

T (K)

• Process 1: Expansion is 
adiabatic: Path crosses the 
liquid-vapor binodal: result is
dynamic recondensation with 
possible recast.

• Process 2: Expansion is 
accompanied by second pulse 
heating: material remains in the 
gas phase above the binodal: 
no chance of recondensation.

• Process 3: Pressure release 
causes expansion of hot liquid 
phase underneath cold cloud. 
Liquid converts to gas bubbles 
after intersecting the binodal: 
recondensation unlikely. 

3

1

2

104

105

ρ (kg/m3 )

critical point

binodal

103100.1

liquid+vapor 
mixture

Second pulse 
laser heating

Aluminum BLF EOS, [ Lescoute et al Phys. Plasmas 2008 ]



Recall the 1 ns pulse….
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Charge-State Ionization Fractions as Function of 
Temperature for Dense Non-Ideal Aluminum Plasmas

• Solved coupled set of Saha equations supplemented by electro-neutrality and a semi-
empirical expression for lowering ΔIz of the ionization energies Iz (pressure ionization). 
Simple model captures electrical properties of hot expanded metal-nonmetal transition 
fairly well.
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•Charge State fractions αz at fixed density ρ = 200 kg/m3 agree well with Pade approximations 
for interaction parts of chemical potentials [Kuhlbrodt and Redmer (2000)]. 

−Wigner-Seitz radius

Z = ne /n − Ionization degree

− Desjarlais (2001)

− Basko et al (1997)

T (eV)



Laser Absorption Determined from Various Models Used for 
Plasma Optical Properties in Warm Dense Matter Regimes 

• Apply linear response theory to average-atom version of the Kubo-Greenwood 
formula for the optical conductivity Re[σ(ω)] = J(ω)/E(ω), where J(ω) is in-phase 
current associated with perturbed electron motions: Includes free-free, bound-free 
(photo) and bound-bound (line) transitions [Johnson et al JQS (2006)]

ε(ω) = 1+ i 4πσ (ω)
ω

   σ (ω) = Reσ (ω) + i Imσ (ω)

1
ν eff

=
1
′ ν 
+

1
νe− ph

• Complex dielectric constant                                                                                       

− Kramers-Kronig relation determines imaginary part

Smoothed joining expression [Benuzzi-Huller-Eidmann (1998)] is good in vicinity of  
metal-nonmetal transition where electron-phonon collisions dominate at low T 
high ρ with corresponding weaker collision frequency

• Tractable form invokes “effective” electron collision frequency νeff (v) and a 
normalized unperturbed Fermi-Dirac free electron distribution f0 (v) 

  

ε(ω) = 1+ ω pe
2 v

3
∂f0
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(1− iνeff /ω)

(ω 2 + νeff
2 )

d3r 
v ∫ ≈   1− ω pe
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(Familiar Drude-like form)

νe− ph =
const cs

2

aBohrvFermi

′ ν = νei (T*) + νen (T*)
Modified “temperature” accounts for degeneracy heuristically

T* = (T 2 + gEFermi
2 )1/ 2   (g ~ 1)

const chosen to fit cold
DC metallic σ (ω = 0)



Description of Laser Absorption Model cont’d

• Electron-ion collision rate Debye screening breaks down in dense strongly coupled 
plasma regime so Spitzer-Harm form has to include ion-ion correlation correction to 
avoid diverging Coulomb logarithm [Benuzzi et al 1998, Kim and Kim, 2003] 

bmax = min vte /ω pe,   vte /ω( )  

• Electron-neutral collision rate 

• The electron neutral momentum transfer cross section used a screened polarization potential 
with screening length of arbitrary degeneracy, reproducing the Debye length                      in the 
low-density classical limit. [Desjarlais 2001,Kim and Kim 2003]. 

• Typical value for ~ 1 eV sub-solid density Al plasmas is                                         can exceed the 
Lee and More ad hoc cross section by ~ 10x, and is needed to explain minimum in DC electrical 
conductivity at  T ~  1 eV and ρ ~ 30 kg/m3 [ DeSilva and Katsouros, 1998]. 
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• Complex Index of refraction n + iκ = ε(ω) = Reε(ω) + i Imε(ω)
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• Laser power flux attenuation  dI
dx

= −2kabsI,   kabs = k0κ  (k0 = ω /c = 1.18 ×107m−1)

ψ =
ne

necrit

1
(1+ λ2)

,     λ =
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ω



Real n(ω) and Imaginary κ(ω) parts of Index of Refraction 
for 532 nm Laser Light in Al Plasma

• Strict wave cutoff (n 0) prevented at critical surface (ω=ωpe) because of high 
νeff. Still, at ω = ωpe the dip in n deepens for higher T because νeff is getting lower.

ρ (kg/m3)
• Power absorption skin thickness δ = c/(2ωκ) in, dense “cold dark cloud” ρ > 50 kg/m3, 
varies from 2μm < δ <100μm for T ≤ 1 eV. Could a thicker, and thus more spatially 
uniform absorbing layer in the cold cloud act to “cushion” the target and lower 
target pressure during second laser strike? 

n

T = 20 eV

1 eV

5 eV

ρ (kg/m3)

ω = ωpe

1 eV

5 eVT = 20 eV

0.3 eV

κ



These models will permit us to model the interaction 
of the laser with the dark cloud

• Will we still see the 2 
mechanisms postulated in the 
phenomenological model ?

• Will the laser heating drive 
enough of the dark cloud into a 
temperature range where 
thermal conductivity is strong ?
– Enhanced ablation

• Will enough of the dark cloud 
be heated so that it does not 
redeposit ?

1st pulse 
scatter from 
target surface

Scatter from 
firing second 
laser pulse  7 
ns after the first 
pulse

28 ns delay 
instead of 7 ns 
delay



Now we see how WDM contributes to laser machining, 
how can ion beams enable further work ?
• Temporally and Spatially localized measurements 

of WDM (for transport properties).

• Heavy ion beam driven foils are uniformly heated.

• The conditions can be created on timescales that 
are convenient for doing experiments.
– All we need is a way to capture and hold the 

expanding plasma long enough to measure it.
– Not tamping.

• We do this in a 2-step process:



Step 1: Explode a thin foil with an ion beam, optically 
measure Reflectivity and Transmission

Probe laser 

Heavy ion beam

Thin target foil 

100 Å ≤ thickness ≤1 
μm

Reflected probe light

Transmitted probe 
light

Problem: Gradients in ρ and T

Ref  and Trans can yield σac



A possible solution is to use a grid of tapered holes 
to catch the plasma.

Heavy ion beam

Probe laser

Reflected 
probe light

Transmitted 
probe light

Thermal 
emission

500 μm

Thin target foil 

100 Å ≤ thickness ≤1 μm

Grid is 100‐300 um thick.



The array of tapered holes is intended to provide a soft stop for the 
plasma to reduce secondary shocks as well as restricted 1-D expansion   

• Grid of tapered holes:
– 15 um tapered to 5 um
– 100 um -300 um deep.
– Close packed
– Entrance side is nearly open
– Spatial resolution for imaging 

diagnostics

• Plasma expansion becomes 
asymmetric after 10X expansion ?
– 1-D and restricted expansion in grid.
– Open side blows away rapidly to 

allow good optical access.

• Limited mass targets can help ? Thin target foil 

“small” diameter



Actual modeling of the effect of the grid of tapered 
holes needs to be done. 

• Preliminary attempt using a 
planar hydrocode.
– Gradients strongly reduced.
– Quasistatic.
– Expect actual grid to be much 

better.

• Fixed boundary 50 um to right 
of a 0.5 um thick AL target.
– Mock-up of 100 um deep grid 

with 50% volume removed.

• Target is heated for 1 ns at 10 
J/cm2 by a heavy ion beam

“grid”



Conclusions

• WDM is present in much of laser materials processing.
– LMP does not end with the laser pulse.

• Improved modeling of the relevant WDM explains phenomena 
observed in laser machining.
– Will continue to lead to better manipulation of WDM (pulse formatting) in 

LMP.
– > $10B industry that will grow.

• Combining optical diagnostics and microstructured surfaces with 
pulsed ion beam driven targets may yield spatially and temporally 
localized measurements of EOS and transport of WDM. 
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