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Laser driven shock wave is widely used 
in the study of WDM/HEDM

• In a steady strong shock, a homogeneous state 
of WDM/HEDM is formed behind the shock front

• As a Hugoniot state, it can be characterized by 
shock speed that is easily measured

• Laser-driven shock provides ready access to 
Mbar regime & picosecond optical diagnostics

This talk focuses on some open questions 
raised by our earlier studies on

- Electron-ion coupling
- Phase transition kinetics
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One of these studies started as an 
EOS experiment

• The experiment is to measure brightness temperature              
of shocked silicon

• With an indirect band gap of 1.2eV, absorption coefficient 
of silicon is <104 cm-1 for λ>0.5μm, allowing observation 
of optical emission from shock wave in flight before it 
reaches the free surface

Nd-glass laser 
532nm, 2.3ns 
Dspot=150μm                         
Φ < 5x1013 W/cm2

Intrinsic, <100> silicon 
65-85μm

Streak camera  
20ps, 4 μm resolution

Emission
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The EOS experiment turned into a study 
of e-i equilibration in a shock wave

• Absolute intensity of emission from shock wave in-flight 
was an order of magnitude below that predicted for an 
equilibrium (Te=Ti) shock front

• 2-T model showed existence of Te and Ti gradients at 
shock front governed by the electron-ion coupling 
constant (gei or g) Optical 

depth

gei = 1016 W/m3K
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Shock front became a means to probe gei

• Emission risetime consistent with opacity of cold silicon
• Inferred gei much lower than Landau-Spitzer results

P. Celliers, A. Ng, G. Xu and A. Forsman, PRL 68, 2305 (1992)

Spitzer σ

L&M σ

1016W/m3K

1017W/m3K
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430nm 570nm

430nm 570nm

Us = 2x106 cm/s



Model-dependent emissivity was removed 
in an improved experiment at MPQ

• X-ray drive to improve uniformity & planarity of shock front
• Simultaneous measurements of shock front emission & reflectivity

Radiative preheat <200K
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MPQ experiment corroborated UBC findings
• For a 6.6 Mbar (20.7 km/s) shock in silicon, Tbr=1.4±0.1 eV of 

shock front is much lower than the Hugoniot value of 4.3 eV

• Absolute intensity consistent with model for gei=1016 W/m3K

Th. Lower, V.N. Kondrashov, M. Basko, A. Kendl, J. Meyer-ter-Vehn, 
R. Sigel and A. Ng, PRL 80, 4000 (1998)
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Lower gei also noted in other work

• A similar experiment of shocked aluminum
– M. Basko, Th. Lower, V.N. Kondrashov, A. Kendl,             

R. Sigel, and J. Meyer-ter-Vehn, PRE 56, 1019 (1997)
– Interpretation was complicated by release of the          

free surface when shock wave emerges

• Energy relaxation rates calculations for            
dense Al, C and Si plasmas with Te>Ti
– M.W.C. Dharma-wardana, PRE 64, 035401 (2001)
– Strong coupling theory (coupled-mode approach) 

predicted an order of magnitude reduction in               
energy relaxation rates
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Key questions remain and there are 
much more to explore

• How can we verify nonequilibrium conditions at              
shock front?
– Measurement of electron temperature far behind                          

the shock front                           
– Measurement ion temperature at shock front

• What other measurements of gei can be made in                        
similar regimes?
– Assessing gei from reflectivity and emission intensity                    

as a shock wave evolves across an interface
• A. Ng and T. Ao, PRL 91, 035002 (2003)

– Determining gei from observation of thermal conduction        
waves driven by intense femtosecond laser (Te>Ti)

• A. Ng, A. Forsman and G. Chiu, PRL 81, 2914 (1998)
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Another study was observation of shock 
formation & propagation in quartz
• Shock formation & propagation in quartz were probed 

with shadowgraphy and Schlieren measurements

570nm, 2ns dye laser 
illuminating target 
onto streak camera

Quartz532nm, 2ns      
Nd-glass laser
D60=40μm
D90=80μm
Φ60<1014W/cm2
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Shock trajectory showed anomalous behavior

• Trajectory of shock front showed high-speed transient 
before relaxing to an asymptotic shock speed

• Peak transient speed higher than 1-D or 2-D predictions

A. Ng, P. Celliers and D. Parfeniuk, PRL 58, 214 (1987)
A. Ng, B.K. Godwal, J. Waterman, L. DaSilva, N.W. Ashcroft & R. Jeanloz, PRB 44, 4872 (1991)

1-D

2-D

α−quartz α-quartz
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Anomaly was found in quartz but not NaCl
• NaCl was used as a control for testing radiative preheat 

and phase transition effects

Fused quartz

1-D

2-D

1-D

Peak transient US

Asymptotic US

Average speed 
behind elastic 
precursor

Peak (α, fused)
Asymptotic (α, fused)
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A conjecture for the observed anomaly is 
kinetic effect of phase transition in quartz

• Quartz exhibits a large volume change at 0.1-0.3 Mbar 
on the Hugoniot due to the quartz-Stishovite transition

Equilibrium behavior

Plausible overdriven behavior

Up to PA - Single shock wave
PA to PE - Two wave structure
Above PE - Coalesced single shock

At PN, material at shock front 
initially responds in original phase 
forming state  M* with US governed 
by the slope of OM

It then relaxes to equilibrium state 
N where US is governed by slope  
of ON
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Another way to view the anomaly is the 
picture of a quasi-Hugoniot on P-V plane
• Transient shock speed U* combined with pressure P* 

from hydro simulations to yield compression V*/V0

• Discrepancy in pressure is due to entropy increase             
in nonequilibrium phase (Ashcroft)

α-quartz Fused quartz

Sesame Sesame

Isotherm

Quasi             
α-quartz
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We have also inferred a rate-dependent 
phase transformation time in quartz

• Much longer transformation times seen in other materials
– Relaxation times of 0.05-0.3μs reported for α-ε transition in iron

• S.A. Novikov et. al, JETP 1965; L.M. Barker et. al, JAP 1974;            
Forbes et. al, Phys. Soc. of Japan 1974)

– Relaxation time of ~0.6μs for solid-solid transition in antimony
• R.H. Warnes, JAP 1967

– A transformation in KCl was observed to complete in 0.04μs
• D.B. Hayes, JAP 1974

P. Celliers, Ph.D. Thesis , UBC (1987)

τr ~ P-0.26   for P~0.5-2 MBar
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The behavior of shocked quartz is 
tantalizing but needs confirmation

• How can we confirm the observed anomaly?

– Probing shock propagation in quartz with VISAR

– Probing shock propagation driven by sources             
other than lasers

– Probing shock propagation in other phase         
transforming material
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These also led to broader questions
• What is the effect of electron-ion equilibration           

on the Hugoniot melting point?
• What is the thermodynamic trajectory for  

transition of a quiescent state to a shocked 
state across the shock front?

• What other discoveries will emerge in                         
non-equilibrium shock physics?

I hope that
• There will be new interest in finding answers 

to all these questions
• Independent complementary experiments will 

be performed using shock waves generated  
by sources other than lasers
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