LBNL, LCLS, LLNL Three-Lab collaboration proposal: R. More, consultant

Is there a 3-Lab collaboration that would be more than just
repeating the same experiment 3 ways in 3 places?

Want the total to be greater than the sum of the parts

Thermal « q=-xVT
CONDUCTION et

Electrical o j=0oE
K=xk(Z,p,T), o=0Z,p, T;w)
K and o are material properties

Unknown 7?77 Measurable ?? Important ??



Are conductivites MEASURABLE 2

Junctions, leads and VT
AC
DIFFICULTIES Inductance and rise-time of B-field
Hydro motion
Accurate temperature

There 1s a limited range (p ~ solid, T < 1 eV) where things look good.
All three Labs can do experiments in or near this range.

o USP Laser reflection/ellipsometry --> AC conductivity o(w)

o Accelerator - homogeneous volume-heating over 1 micron
B-field penetration --> Skin effect --> electrical conductivity ©
Heat conduction --> thermal emission --> conductivity K

o X-Rays --> S(k) ~ atomic pair-correlation --> Predict 0, K
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SPECIFIC POINTS to TEST
Is x proportional to o ?

2
K 35 (k_)
ol e

Wiedemann-Franz Law is not verified at WDM conditions. .
San Ramon meeting (May, 2012) - participants expressed doubt about it. I\Ls'hv\ \k\uf k

Does Ziman formula get the right answer ?
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Measure S(k)

LCLS X-ray source + laser heating, diagnostics
LBNL Accelerator, diagnostics, analytic tools (codes)

LLNL Short-pulse laser, target fabrication,
diagnostics, codes & modeling

Measure o, K up to 1 eV

Measure o at higher T's

Propose experiments using similar targets, similar temperatures.
Compare diagnostics and compare computer models.
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Is conduction IMPORTANT 2
RT might be

1) NIF Experiments <== Rayleigh-Taylor <==| stabilized by
heat conduction

2) Pulsed-Power Experiments <== wires switch conductivity

SNLA - Reno - NRL - Cornell - CEA Bruyeres - Nagaoka - Tokyo

3) Metal-Insulator transition is BL fundamental physics

Mott-Anderson = sharp transition in o(p)
g

Is there ever a sharp phase transition in o(T) ?
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LBNL tools for analysis of experiments:

Active collaborations with Princeton (PPPL), Japan (Osaka, Tokyo UEC),
France (CEA-Bruyeres), Germany (GSI) and China (BAO)

EM wave code for short-pulse laser interaction (reflection - ellipsometry, early-time hydro)
Relates measured reflectivity to electrical properties of hot target

EM wave code for emission from warm dense matter with temperature gradient at surface
Relate visible light emission to target temperature (spectra, angles, polarization)

Theory models for electrical & thermal conductivity
Basic model (Lee-More, 1982; Desjarlais, 2002) + New LMD code in development

Livermore ICF code HYDRA ; DISH is our own 1-D hydro-code,
ALE-AMR, surface-wave code (laser experiments on Hg liquid)

| NEW \
| MD+CR Code for short-pulse high-intensity X-ray interaction with solids

H. Yoneda SPRING-8 experiments with 10 W/em® of 7 keV X-rays in a 10 fsec pulse
First code version treats 1000 excited states on 100,000 atoms.
More & Wang, Invited paper at Kobe Conference on Computational Physics (CCP2012)
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MD + CR Code:

TEST for ATOMIC KINETICS:

One-atom CR solution for neutral hydrogen

Starts in groundstate, relaxes to equilibrium
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ANOTHER IDEA for 3-Lab collaboration:

@ Plasma turbulence is hard to observe, so it is difficult to study turbulence
in dynamic HEDP plasmas.

@ In a metal-foam target, we know the initial spatial structure of the density
modulations and they offer a surrogate for turbulence.

We can measure their hydrodynamic expansion and conductivity.
@ Small-angle X-ray scattering can observe the resulting Op(r, ).

Plasma turbulence can appear to change plasma material properties:

EOS - turbulence adds an extra pressure and energy.
Adiabats - turbulent flow has entropy ==> affects compression tracks.

Thermal conductivity - turbulent Op(7, ) can deflect electrons, change k.

These changes are probably not consistently modeled in ICF design codes.



There are several ideas for 3-Lab joint experiments: Richard More, LBNL, LLNL

1.) Porous targets ==> TURBULENCE surrogate

Volume-heated porous targets have known size-scale for density variations.
How does small-scale turbulence change EOS, ADIABATS and CONDUCTIVITY ??

2.) Ion irradiation experiments
Irradiate similar targets with ions from NDCX-II and from short-pulse laser ion source.
Try to achieve similar energy density and ion range conditions; compare target response.

3.) Transport properties of heated matter (T =0.5 to 10 eV)
Test transport coefficients used in HYDRA, LASNEX, ALLEGRA
Heat conduction might be important for stabilizing Rayleigh-Taylor in NIF targets
Physics to test: metal-insulator transition, Weidemann-Franz law,
magnetic flux diffusion times, electron-ion heat transfer time, viscosity.
A priori conductivities based on ion S,(k), ion-electron S, (k, w) measured with X-rays

Measure: heat-flow by light emission, magnetic field penetration time by Faraday rotation,
laser reflection, X-ray probe of hot sample, direct electrical measurements.

LLNL can do short-pulse reflectivity measurements sensitive to AC conductivity o(w),
LCLS can heat targets and measure S(k) (= structure factor) for transiently heated matter
Can easily measure S(k) but it's a challenge to do it at the same plasma p, T conditions where o is measured,
LBNL can heat 1u foils and measure electrical conductivity o and thermal conductivity K.
The experiments will work best at ~ 1 eV temperature where the sample melts, evaporates but does not expand violently.




