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Our facilities can now produce material conditions at pressures

higher than the interior of stars

NIF will produce conditions found in stellar

interiors (1000 times solid density)

Radiation-hydrodynamic
simulations of NIF implosions

n, (cm)

10% New NIF regime
I Fermi degenerate b 0.1
. o =0.
102 [ e S. H. Glenzaat al .,
N - S PRL (2003)
22 |- A ] S.H. Glenzatal .,
10 . PRL (2007)
Strongly
102 coupled
| . .
er?m: Conventional, optical o =01
108 %2600 A 1 S.H.Glenzetal .,
4 Phys. Plasmas (1999
10 : ' :
0.1 1 10 100 1000

T, (eV)

t=16.02 ns

-40 -20 0 20 40

Density (g/cc)
[

129 464 800 1135

X-ray scattering provides temperature and density
Need intense high-energy radiation to penetrate through the capsule and to

avoid bremsstrahlung emission
Access matter at 1 Mbar to 100 Tbar

First fundamental science experiments on NIF to study CH at 1 Gbar)]
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Radiography of a spherically converging shocks driven with
hohlraums heated by 1.3 MJ laser energy indicates 300 Gbar

Experimental configuration

X-ray Thomson Scattering
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GBar pressures are present close to
shock coalescence
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From optical [CThomson scatteringto x-ray [Compton]

Scattering

Non-collective Thomson Scattering (A* < Ap)
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From optical CThomson scatteringo x-ray [Compton]

Scattering

Non-collective Thomson Scattering (A* < Ap)
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X-ray scattering divided between elastic (Rayleigh) and inelastic
(free plus weakly bound) components

Elastic Ightly bound e Tightly bound electrons give Rayleigh
.P. > (hv/mc?)hv peak and correction to the Compton
shift
’,I ﬂ/ \‘
— NSNS N k :'
\ g, i
hv, . ~ 4
. Weakly bound e’l.P.
Inelastic < (hv/m_c?)hv AE, = (hv/IIIecz)hv
AVAVAVAVA -
hv,
2N h N
SNV A % Free electron
O. L. Landen et al., JQSRT 71, 465 (2001): Max. 6: B2 max. Compton shift
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X-ray [Thomson[bcattering in warm solid density matter was
first demonstrated on beryllium at the Omega laser

Au shisld (5D m)

X-ray
Scattering

Gated HOPG sp.
f/ | Compton downshifted and

ectrometer

Doppler broadened
Thomson spectrum
observed as expected

+ T, broadening was predicted in
1928: Chandrasekhar:

[$cattering will not be influenced by
ranges of temperatures available in

the laboratory[]
Proc R.S. A 125, 37 (1929)

S. H. Glenzer et al., Phys. Rev. Lett. 90, 175002 (2003).
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The theoretical form factor for x-ray scattering provides reliable
plasma parameter for back scatter experiments

o ‘ Q\V\ \\\Vﬁ ‘,ﬁm hao, - hao,

S A,w) = ‘jj([’)+q(£’)‘ S (A) + So ko) +Z, [ 8. (ho-a)S(ka')do

lon feature Electron feature Bound-free

. Free or delocalized electrons result in the

lon feature Compton down-shifted line, Z S,
[tightly bound/screening e’] (k,m)
” . Bound-free contribution also results into
2z Electron feature down-shifted spectrum
% [free or delocalized e’] . Z, S.. (k,0)
+ |Bound-free The momentum of bound e" causes
= |[weakly bound] broadening
. The ion feature describes elastic
scattering
E E.. E Sii(k!w)
Energy compton bind =0 «  In backscatter: theoretical

approximations agree

Schematic Scattering spectrum

=

Chihara, PRE (2000), Gregori et al, PRE (2003)

Option:UCRL# Option:Directorate/Department Additional Information

8



X-ray scattering provides accurate temperature measurements

in solid-density Be plasmas

X-ray scattering spectra provide accurate
dataon T, and n,

Comparison of experimental data with
theoretical calculations for various T,

0=125

(o))

| | | |
ne = 3.3 x 1023 cm3 from
the ratio of electron to
ion feature \

To=53eV

- from shape
of the red
wing

Intensity (arb. Units)
i
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r =|0.3
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Energy (keV)

N

Intensity (arb. Units)

Best fit:
T.=53eV

4.4 4.6
Energy (keV)

4.8

From the theoretical fit to the data:
T.=53eVandZ,. = 3.1 corresponding to
n, = 3.8 x 102 cm-3

A sensitivity analysis shows that we can
measure T, with an error bar of ~15%
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K-o. Compton scattering on the LLNLTS Titan laser measures
temperature in shock-compressed matter with 10 ps resolution

K-a x-rays at 4.5 keV have been applied to

scatter on dense compressed LiH * K-a scattering has been developed to

provide accurate characterization of
dense matter

ComptorRayleigh
line atter

X-ray scattering

+ Compressed Matter experiment

4.5 keV ﬁ 0.3 kJ laser, 6 — First s_uccessful
K- x-rays ns shaped experiments on
L by Y compressed LiH
Petawatt Ti — Data from Titan are of
beam, 10ps sufficient quality to test

radiation-hydrodynamic

Mass density Laser Intensity mode"ng
]

7 ns: p=2.2 g&

N

-y
o

* Density is constraint by the width of the
Compton feature

— Consistent with x3
compression

7 ns

4 ns

T'm?,., (ns)

4 ns: p,=0.8 g/cc

Intensity (10" Wem-2)

0 \ \
-300 Z (um) 0 0 Time(ns) 10

Shaped drive launches two shocks that
coalesce at 7ns with n, = 1.7 x 1023 cm-3

« Characterize shock-compressed matter with ultra-high temporal

resolution of 10 ps and with 1012 photons UL-
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The Thomson scattering data test hydrodynamic modeling of the

temperature evolution in shocked matter
-

« Temperatures in hydrodynamic modeling is primarily determined by the equation of state
[10ps probe can resolve differences of EOS models]

* This technique will need to be further developed to establish a diagnostic for heating

Single shot K-alpha scattering on shock- The x-ray scattering data test radiation-
compressed LiH hydodynamic modeling of compressed LiH

A. L. Kritcher et al., Science 322, 69 (2008). L 1
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Forward scatter will directly measure Plasmons for A* > A
or a > 1 with a = A/4m A\ sin0/2

Option:UCRL#

Backscatter provides T,: theories
agree
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Measurements at different scattering angles provide the plasmon

dispersion is measured at 5 k vectors
-]

The plasmon shift is (approx.) constant| | The weak plasmon dispersion reveals
between k=1.3/A — 2.8/A strong electron-electron correlations
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/
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We observe collisional plasmon damping

Landau damping decreases ~k”2
below critical wavenumber kc=1.8/A

50 : : . : i
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mean square width,
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Recently, we demonstrated proton heated matter at Titan by

splitting the short pulse beam

Proton source:

X-ray source Al foil
foil (10 um) .
Au x-ray shield

. Ly P
Ti K-a: 4.5 keV Yo%

© k —
To HOPG crystal
180 pm spectrometer

10 fraction of incident
laser energy is converted
into the K-« line

Proton beam: 80 J

X-ray source: 160 J
Duration: 5 ps

X-rays arrive 300 ps after
heating: thermal

equilibrium

Scattering parameters
a=0.77-1.4
k=7 (1/nm)
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Experimental data in Boron shows plasmon indicating an
ionization of 2.5 £ 0.5 at about 18 eV

Scattered signal from hot boron

Intensity [Arb. U]

Scattered signal from cold boron Energy shift [eV]

a~1.4,T.=18 eV, p =2.4 g/cc

2
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Lasnex simulations show good agreement with temperature
measurement, but not with ionization for the Boron nitride

—— Protons & Carbon ions

m XRTS
— Protons
S0 EEEEEE— — 3.5 ' ' " .
25 Sk
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S | . s 2l
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There is a new effort to include band gap model to
describe the heating ] W
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Scattering Experiments provide important physical properties of

shocked/heated matter
[

Diagnostics Observation Parameter| Physical Property
Forwad Scatter |Plasmons Ne Compressibility
Vei Conductivity
Detailed Balance |T, Heating
Elastic feature T, Sii EOS
vShock
Z5 Ionization Balance
Back Scatter Compton line Te Heating
Trermi Compressibility
Elastic feature Ti, Sii EOS
Zss Ionization Balance
Side Scatter Elastic/Inel. vs x |Z.¢(X) Hydrodynamic Mix
Elastic vs 0 Sii(k) EOS
Inelastic vs 0 e(k,m) Dispersion/EOS

=
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Experimental geometry will use counter propagating long pulse

lasers and a delayed LCLS beam

Option:UCRL#

April 2013 X-ray Free Electron Laser Experiment

2w optical drive
Target in Holder to
beams’ 10 J’ 2ns, allow 50 — 100 shots
CPPs without venting

FEL-beam 9= =
1st harm \ o
AE/E = 1 %ll*f - -<
4-8 keV

20-100 fs Shocked Solid

2
N Matter,
/ B, BN, C, Mg, Al

Spatially, angularly,
spectrally resolved
scattering
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Experimental geometry will use counter propagating long pulse
lasers and a delayed LCLS beam

April 2013 X-ray Free Electron Laser Experiment

2w optical drive
Target in Holder to

beams, 10 J, 2ns, allow 50 — 100 shots
CPPs without venting
FEL-beam 9= =
1st harm -, —
AE/E = 1 %ll*’ . '<
4-8 keV
20-100 fs Shocked Solid

Compton scattering

2
N Matter,
/ B, BN, C, Mg, Al

Z

Compton
feature

Elastic peak Angularly resolved

B

ignal [a.u]

e——
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The new MEC experiments provides important data in a

previously unexplored regime
-

Structure factor measurements from Omega

The peak of the

directly provide compression structure provides
120 — ——r—r—r—r— e | P
: ® S_"(fﬂ:;)2 calculated from data ]| = The width of the
100 | == HNC-Y+SRR | structure may be
- ' developed into a
~ [ temperature
? 80 - measurement
= = This capability can
i 60 - be developed at
53 the 4 BA HED
;"‘ facilities
40
20 |
0.
0

k [1/A]
T. Ma et al., PRL, in print (2013) w 22
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The new MEC experiments provides important data in a

previously unexplored regime

0 fucomected

12

Structure faclarmeasurements from Omega
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2 1 4 B
K[/Angstrom]

10
k [1/A]

The peak of the
structure provides

P

The width of the
structure may be
developed into a
temperature
measurement
This capability can
be developed at
the 4 BA HED
facilities

T. Ma et al., PRL, in print (2013)

L.
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Scattering intensity Wik)

Recent Omega experiments close to 100 Mbar have shown
features that indicate electride properties

Possible electride peak

100 |

10 |
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Omega-data

WV

B Counterpropoagating shock

B Single Shock
rho=16a/ce
rho = 8glcc

Wavenumber k (10/nm)
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120 : : D
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40 | ]
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Y 0 Kk

Predicted electride
position for Mg

Fortmann, Niemann, Glenzer,

PRB (2012) l!!
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LLNL experiments performed using the Callisto laser

Pulse Compressor — 3 100 fs Oscillator/
in Vacuum W o Pulse Stretcher

532 nm
5-Pass Bowtie Pump Beam

Amplifier from Janus
Final Ti:Sapphi Performance

Disk Amplifiers Ti:Sapphire laser
High Intensity Wavelength 800 nm
X-ray generation Energy 15J

Duration 60 fs
Peak power 250 TW
a,~ 2-4

Laser normalized potential ¢, =8.5x 10™"° A[um ]/ A W/em?] w
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26

These self-guiding experiments are performed with the
200 TW, 60 fs Callisto laser at LLNL

& ~0.5 GeV

S ca Electron

Qo Transmitted Spectrum Beéam '~ "

55?2 Prism Spectrometer

B X0 ~ [~ = Bxitimaging CCD

. Interferometer Beam- - HWL”‘\\H / AW -
ccD T = s

Plasma Emission
Spectrometer + CCD— proP®e

Image Plates

Callisto Beam Pellicle

-a4+—— Gas Cell

NIl 567.6 nm . :
Si LIl 566-
N 11 571.1 nm Accelerator/ Lt

" :
N1585.4 nm |\__INnjector
He 587.6 nm il He 587.6 nm

Intensity (a.u.) Pollock et.al., PRL 2011

Plasma Emission
Spectra




#, (mrad)

Calisto produces a 100 fs broadband highly collimated

betatron x-ray source

Sub-micron reconstruction of electron trajectories
in plasma with betatron x-ray radiation

0.004

0.002

0.002

Output Angle px/pz (rad)

0.004

0.000:

Simulation parameters
%= 0.3 microns
n=210"cm

Yo~ 5

E,=085E,

E,=136 GVIm

100 150 200 250

Electron Energy (MeV)
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Single shot ultrafast absorption spectroscopy

Transmitted spectrum near
absorption edge

Laser pump
(adjusted delay)

Sample
3d transition metal

Crystal 1.4 1
Spectrometer 1

c
ke
> 5"
3 ~ SNV
3 T {® e
Betatron X-ray probe < g, \1/5[ N
0.6 -
=  Ultrafast absorption spectroscopy: powerful tool to 04 XANES _ EXAFS |

[

study the local atomic structure in materials.

=  Sensitive to charge transfer, orbital occupancy and
symmetry.

=  We will be able to do this on the [haturalC{fs) time
scale of electronic and molecular motion.

= |n situ monitoring 3d transition metals dynamics in real
time.

Increasing photon energy (keV)

First proof-of-principle experiment of ultrafast XAS with the
Betatron source

=

28
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Fundamental science questions for warm dense matter research
-

= Determine the phase space of warm dense matter accessible at BA
HEDS C

T, T, n,, p,, Z, especially T, = T¢
= Physical (microscopic) properties
e Electron-ion equilibration

e Conductivity
e Optical reflectivity

= Material response
 Heat wave propagation
e Electron-ion equilibration
 Radiative properties

= Discoveries/Applications
 Phase transitions

« New materials (e. a.. electrides. metallic properties)

The West Cost laboratories have developed experimental capabilities to
answer the fundamental questions related to warm dense matter Ll-

29
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Thank you

Lawrence Livermore National Laboratory



Titan will enable experiments combining short-pulse

petawatt-class, and long-pulse kJ beams

»500 J short pulse

Wavelength 1054 nm
Pulsewidth 400 fs - 200 ps
Pulse Energy Up to 530 J
Spot Size Bum

Rep fate 2hour

Long Pulse
Wavelength 1053 nm, 527 nm
Pulsewidth 250 ps- 20 ns
Pulse Energy 1 kd, 1, =3 ns;

140 J, 1is, 250 ps
Spot Size 17 pm
Rep Rate Ahour

Visit http://jlif.linl.gov/

NSDXII 1st year: Li+ 1.2 MeV; <3'd year
8 J cm2; Al 0.07 Mbar; 10710 x-ray
photons and ns- lasers

MEC-LCLS: 10*12 x-ray photons, ns-
lasers, 4 TW 35 fs laser

=  ALS: mJ 800nm laser, 1026 photons,
10-100 shots; De/E = 3%; 60 eV width:
1 eV at solid

L.
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Proposal — who will it be addressed to?
-

= Define T rho space

= Define sigma versus T and range possible at the
various facilities

= Define diagnostics
= Define overlap of diagnostics
= Define target materials and overlap

Option:UCRL# Option:Directorate/Department Additional Information



Compressed Be at 30 Mbar has been characterized
with x-ray Thomson scattering

X-ray scattering on compressed Be has been
performed at 90° and 25° scattering angle

90° scattering ||
Befoll |f

(¥ scattering
% ¥ 250 um Be

solid

12 Probe Beams
1ns [probe at 4.5 ns]

shield Crystal
spectrometer

1-D Helios simulations indicate density of n,
=7.5x 1022 cm=3[ x3 compression]

oo
T

Electron density (1023 cm-?)
D

=

0 100 200
Length (um)

compressed Be

. A new Mn He-a backlighter at 6 keV was applied to penetrate through the dense

. Disadvantage: double peaks from He-a and intercombination line

Option:UCRL#

Option:Directorate/Department Additional Information




First X-ray Thomson scattering spectrum from
compressed matter (Be)

Scattering data at 4.6 ns measure compressed matter density [E; = 30 eV] and temperature

0.8 0.8 : :
Scattering Data _ _Srcittfsrir;%/,lj_?ti 13 eV
n =75x10¥cm? e i
c L ——T =8eV, T =8eV
0.6 n,=3x10"cm i 0.6 | |—T =30eV, T =30eV |
M n,=12x10%cm? 0
= =
=) =
o 2 Intensity and shape of
& 0.4 | width of Fermi . i'; 0.4 - Fermi-degenerate 1
%' -degenerate Compton = Compton spectrum
& spectrum sensitive tq n, 5 S2AEHE UE W o1l
c M c
= 0.2 4= 0.2 - -
(1 Jnannd ‘v_ | \ \\ 0°€ g ‘ : ‘ k
5800 5900 6000 6100 6200 580 5900 6000 6100 6200
Energy (eV) Energy (eV)

. 90° scatter, non-collective regime: n,=7.5x102 cm-3, T,=13 eV, Z=2, a~0.5
. Consistent with simulations and forward scatter results
. First direct measure of increased Fermi energy and adiabat in laser-compressed matter

Option:UCRL# Option:Directorate/Department Additional Information
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First X-ray Thomson scattering provides accurate
characterization data

Scattering data at 4.6 ns measure compressed matter density [E; = 30 eV] and temperature

0.8 |
. Standard deviation of data and fit
Scat;egngzjga . [Noise standard deviation is 0.005]
n =/79X cm
0.6 n,=3x10%cm?® |
' n,=12x10%cm?®

04 | width of Fermi

-degenerate Compton

spectrum sensitive tg n,
v

Intensity (arb. units)

6100 6200 10 12 14
T, (eV)

0 HES \ \
5800 5900 6000

Energy (eV)

. Density and temperature are determined with an error bar of <10%
. High accuracy due to additional constraints on Z by the forward scattering data
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Forward scattering data show plasmons at small energy shifts :
collective regime , 25°

Scattering data at 4.4 ns measure compressed matter density [E; = 30 eV]

0.5 :
_Mnéowﬁe
spectrum
04 | |
0
= I
> 03 | .
Q ; : - .
s 6 6.1 6.2
> Energy (keV) ¢
@ 0.2 - 4
c
2
: |
0.1 - |

0 | |
5800 5900 6000 6100 6200

Energy (eV)

. Forward scatter: n,=7.5x10%3 cm3, T ,=12 eV, Z=2, a~1.6
. Forward scatter and backscatter results both provide compression of x3
. First direct measure of increased Fermi energy and adiabat in laser-compressed matter
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Forward scattering data show plasmons at small energy shifts :
collective regime , 25°

Scattering data at 4.4 ns measure compressed matter density [E; = 30 eV]

0.5
D?'lor §
Scattering Data Z__ 5 T §
0.4 - n,=8x10%cm? T =13 eV . XRays © © ©
€} ©
) e © ° G, 9.
'c Plasmon features at Ks © © A, ©
5 03 small energy shift is . Ak - —° 4D
£ sensitive to n, Ko MER 1/k
> v
B 0.2 - .
c
=
= u
0.1 - |
O L, L B T iy (A Ml
5800 5900 60 6100 6200

Energy (eV)

. Forward scatter: n,=7.5x10%3 cm3, T,=13 eV, Z=2, a~1.6
. Forward scatter and backscatter results both provide compression of x3
. First direct measure of increased Fermi energy and adiabat in laser-compressed matter
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Forward scattering data show plasmons at small energy shifts :

collective regime , 25°

Scattering data at 4.4 ns measure compressed matter density [E; = 30 eV]

Intensity (arb. units)

0.5
Scattering Data
04 n =8x10%cm® T =13eV |
Plasmon features at
0.3 - small energy shift is 1
sensitive to n,
v
0.2 - |
01 i
L= _.‘l_-E‘—1-'TlI'T'JH‘I!-‘ ‘ Ml

0 Maund AV
5800 5900 60

6100

Energy (eV)

6200

Intensity (arb. units)

0.5

0.4

Scattering Data
n =8x 10% ecm’, T =13eV

n,=3x 102 cm®, T =13eV
n,=12x 102 cm’®, T =13eV

0.2 -

0.1 -

0 wave
600

———

76050 6100 6150

Energy (eV)

6250

First direct measure of increased Fermi energy, plasmons, and adiabat in laser-

compressed matter

Accurate characterization tool of laser-compressed matter

Option:UCRL#
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Possible Applications to NIF
...

Scattering data at 3.7 ns
Delay: 2ns indicate T < 50 eV

o

Experimental Geometry

Delay: 3ns

W - F

Intensity

6 beams for x
y probe

8 9
36 Drive_> Energy (keV)
Beams We have begun x-ray scattering

experiments on capsule implosions
with n,>10# cm3; a =T /T ~ 1

X-ray
spectrometer l!!
39
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X-ray scattering measures Compton and Plasmon

features directly providing T_/T,
-

Radiation-hydrodynamic
simulations of NIF implosions

Simulated X-ray Thomson
scattering from implosions

t=16.02 ns

-40 -20 0 20 40

Density (g/cc)
[

129 464 800 1135

- =-lce

Ice plus ablator

o
")

Intensity
o
D

o©
>

o
N

15
Energy (keV)

o
[\
—h
o
o

The width provides a measure of the Fermi energy
Not sensitive to contributions from ablator - weighted towards the dense ice

Option:UCRL#

= The width of the X-ray Thomson scattering spectrum reflects the dense fuel

i

University
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Ultrashort pulse lasers will enable X-ray probing techniques
-

= Betatron

= X-ray Compton
= Backlighters

L.
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Experimental setup for laser wakefield acceleration

Focal Spot Size = 15 um (f/8)

Image
Plates

Callisto laser pulse
Upto15J, 60 fs
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Electron beam detected with a two screen
spectrometer

50 100 200 MeV

fi8 i
60fs/10 J "
Magnet
Gas Jet
4— 85cm —p «—— 85cm = & 75cm c——p

clectron angle and energy calculated from information
on the two forward image plates

B.B. Pollock, proceedings of PAC ncouver
I. Blumenfeld et. al, Nature, 445, 007)
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We look at the exit of the target to show that the laser is
self-guiding

Focal Spot Size =15 um (f/8)

Image Plates

To Forward Imaging

Callisto laser pulse
Upto15J, 60 fs
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Self-guiding is the evidence for driving a plasma wake
-

of the 14 mm gas cell

An image of the vacuum spot at the exit

An image of the self-guided spot at
the exit of the plasma with density of
1.3 x 107 cm?-3

200 400 600
(pnm)

6000

5000

4000

3000

2000

1000

0 200 400 600
(u m)

from focus

Spot radius 1/e? is 290 um at 14 mm

Spot radius 1/e? is 25 pm at the exit of
the gas cell

Option:UCRL#

J.E. Ralph et al, PRI 102, 175003 (Zm
J.E. Ralph et al, Phys. Plasmas, 17, 09 (2009)
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Our experiments agree with the blowout regime

model

3-mm
120 MeV 3

Electron Energy
Electron Energy

9x1018

5-mm

6x1018

Electron Energy

3x1018

Increasing electron energy

with decreasing density

2

p _17( P )”3 10%em™)"
e 100TW n,

15 | _ i

Max. Energy (GeV)

(cm™)

Density x10'®

No electrons accelerated below

3x1018 cm-3

Option:UCRL#

D.H. Froula et al, PRL, 103, 215006

J.E. Ralph et aI Phys Plasmas, 17
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No electrons are accelerated below ~ 3 x 1018 cm-3

1000 | | | I I
P=75 . _

100 |- W & f 2 But there is a problem:
0L &S ff ff f ¢ The lower the density,
. ;&, org"g ii t the longer the dephasing

2 0fF i b length
G2 ﬁf Ly = 3,
01 | f _ e

Density x1018 (cm™)

We need another mechanism to accelerate electrons to GeV energies
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The solution is ionization induced trapping

Idea: Introduce a small amount of “dopant” in the
Helium gas

I I

/ \ He + N,
/ - N T Plasma

-+

- —

-

He

N2

0 | |
0 50 100 150

Time (fs)

Inner shell electrons are ionized and trapped directly inside the bubble

& .
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We can then go down to lower densities to
accelerated GeV electrons

Charge vs. energy shows
2000 MeV scaling with density and
1000 MeV " power
500 MeV 1" |
g % 107 | ?\\ .
% 3 1 ~'"'-}-
o 1070 i . 1.3x10®cm3 |
5 o 5.:‘7‘5XT1\,(:, N \‘I1:i)TW0
- N l
: TR
c 0.1 1
L
Energy (GeV)
100 MeV Charge can be seen beyond 1
GeV at a density of 1.2 x 1018

4x1018 1.2x1081.2x10"8 ' Lpes

Density (cm-3) UL-
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We have shown the world record electron energy

from laser wakefield acceleration
L

1.4 GeV record energy
y-position (cm)
1

0Ox (mRad)

-

dN/dE (pC/GeV)
=)

0.01

1.5
Energy (GeV)

C.E. Clayton et. al, PRL, 105003 (2010)

High energy but continuous trapping does not allow for
monoenergetic beams

W .
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A two stage gas cell can localize the trapping

He+N2

He only

Callisto beam in

Callisto beam out

O

Q

Injector stage
3mm
lonization induced trapping

Accelerator stage
5 mm
Acceleration only

Option:UCRL#

L.
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0.5 GeV Narrow energy spread electron beam from

two-stage accelerator
-

Electron Beam
(First Image Plate)

6

~~ 0 _

g - e ;

L : 6 Eg
O - ' 4

E © § | ¢ 2

S -~ | 0

o 100 200 500

le) 0 1600
i | : l 1200

i = i Injector + i sor 0

é ; Accelerator! w00 D

x LO : : —
D ~—

100 200 500
Electron Energy (MeV)

B.B. Pollock et. al, PRL 107 045&2011)
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Implementation of cannon spectrometer to measure spectral and
spatial information

Image Plates

Pb + plastic
housing

X-rays

Signal up to channel #5: X-rays > 20
keV

Al Ti Fe

MeV/photon

Cu

T

Ll LT TS

L

s |

Ti
g

—Cu
—Mo

|—Ag

s | |
Ta

aasl b mm.ﬁu.lE

===1 mm Pb
===2mm Pb

| ===3mm Pb
=4 mm Pb

10

Photon Energy (MeV)

Mo

10’
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