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Haber’s Pseudo-Spectral Analytical Time-Domain (PSATD) algorithm [1] offers numerous
advantages for Particle-In-Cell beam simulations. It has dispersion-free electromagnetic wave
propagation and no Courant limit in vacuum. It also possesses superior numerical stability
properties [2], especially when combined with Esirkepov’s current deposition algorithm [3].
Vay’s recent research [4] suggests that it can be parallelized about as well as Finite-Difference
Time Domain {FDTD) algorithms.

Despite its superior numerical stability, the PSATD algorithm exhibits both the numerical
Cherenkov instability [5] in cold, relativistic beam simulations and the well-known quasi-
electrostatic numerical instability [6] in cold, non-relativistic beam simulations. In this talk we
extend the results of [2] by completely eliminating the primary mode of the numerical Cherenkov
instability for all beam energies. Moreover, by using cubic interpolation and modest digitally
filtering, we simultaneously minimize higher-order aliases of this instability. Finally, we
demonstrate that a variant of PSATD eliminates the quasi-electrostatic numerical instability.
These results, derived from the complete PSATD cold beam numerical dispersion relation, are
confirmed by two-dimension WARP [7] simulations.
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 Numerical Cherenkov instability essentially
eliminated for PSATD relativistic beam simulations

e Points way to suppressing Numerical Cherenkov
instability in FDTD simulations

 Numerical stability software collection at
http://hifweb.lbl.gov/public/BLAST/Godfrey/

— Contains this talk, some software; more to come

e Details from brendan.godfrey@ieee.org

*Introduced by I. Haber, et. al., Sixth Conf. Num. Sim. Plas. (1970)
Expanded upon by J.-L. Vay, et. al., J. Comp. Phys. 243, 260-268 (2013).
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e Serious issue in 2D, 3D EM PIC simulations of
relativistic beams (accelerators, astrophysics, etc.)

1
— Growth rates a large fraction of (wpzklet/v) /s
* Arises from differing approximations to w — k,v:

— Lagrangian particle pusher — sin [(a) —k,'v) %] /%

— Eulerian field solver ~ sin [a) ]/— — v sin [kz %‘ /72

— Difference leads to spurious beam-like normal modes,
including aliases, which are unstable when interacting with
light modes

* Typically addressed by substantial digital filtering
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Presenter
Presentation Notes
Note that Eulerian field solver expression is notional: details depend on algorithm.  First term from E, second from B.
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Particle force: F* = Qz: E™ +{5:

: . kAt KAt
with §;, = sin—-, Cp = COS ——

2Cp

e {,Yr, Yy — diagonal matrices, nine free parameters in 3D

e Jassumed to conserve charge
— e.g., Esirkepov algorithm or standard current correction
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Presentation Notes
Generalization is introduction of diagonal matrix ζ, affects transverse currents only, and ψ
Talk focuses on Esirkepov algorithm results
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At
Co + nz C, csc [(w —k,v)—
m 2

C,, AL
+nz Cox +—5 ) csC [(w —k,v)—
m 14 2

Cs, AL
+nz C3x —5 CSC [(u) —k,v)—| =0
m Y 2
with n the beam density divided by y
/ 2 :
and k, = k, + mA—Z (aliases)

e Beam modes associated with Cy, C,, are numerical
artifacts, trigger numerical Cherenkov instability

9/82013
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Presentation Notes
Conceivably, artificial beam modes could couple with physical modes to produce other spurious effects


Full Dispersion Relation Growth Rates “] :
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 Peak growth rates at
resonances

— m = 0 dominates for
2 o (8x 22

Ax At, Ax
— m = —1 dominates
otherwise
e Parameters
VAt
— A_Z — 1.2,17 ~ 1

— Linear interpolation

Use digital filtering to eliminate m=0,-1 resonant instabilities
Select free parameters to suppress nonresonant instabilities
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Presentation Notes
Make distinction between resonant and non-resonant modes, effect of option (b) vs (a) on latter
Describe how modes move as dt/dz changes
Higher order interpolation suppresses higher order instabilities at small k
Describe k=π/Δt line
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0.040 Analysis (y=130, modified)
® Simulation (y=130, mod)
0.030 - = = = = Analysis (y=130)
A Simulation (y=130)
3
£ 0.020 -
0.010 -
0.000
0.0 0.5 1.0 1.5 2.0

v At/Az
e Choose (to set C, = 0, multiply by Sin1/6(kZAZ/2)
e Residual instability at vAt/Az>1 from m = +2 aliases

9/3/2013
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0.010 - Analysis (y=130, Az/2)
0.008 = = = = Analysis (y=130, Az/2-Az/4)
Analysis (y=130, Az/4)
3 0.006
= 0.004
0.002 N
0.000 |
1.0 1.5 2.0
v At/Az

e Collect currents with twice usual resolution, discard
upper half of k,, use rest to push fields
* |Interpolation scale-length modestly impacts stability

9/3/2013
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0.020
0.015
3
£ 0.010
0.005

0.000

Analysis (b2, a=0.6)
® Simulation (b2, a=0.6)
= = = = Analysis (b1, a=0.6)
A Simulation(b1, a=0.6)

0.5 1.0 1.5 2.0
v At/Az

 Choose (to set (3, = 0 (finite-y third-order pole)
 No need to eliminate odd aliases (lower cost)
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B by Az/2 Suppresses Low-y Instability EEEREE
0.040 - Analysis (y=130)
" = = == Analysis (y=6)
0.030 - _:}': TETTTE Analysis (y=4)
. : l Analysis (y=3)

3
£ 0.020 -
0.010 -
0.000
0.0 0.5 1.0 1.5 2.0
v At/Az

e Superior at high y, equally effective at low y as
“energy-conserving” algorithms (which also shift E)
e -based options presumably also work well

9/3/2013 10
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\')4
e Occurs in narrow bands at k = It /At (I odd)
* Insignificant at relativistic energies
* Plot parameters: (-based option, no odd aliases
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+ Choose 2£ to set C,,, = 0 (in k-space)

9/7/2013
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Approximate by ratio of polynomials in sin? [kZZAZ]

— Mathematica Rationallnterpolation works well
— High accuracy essential — of order 107°

Set Y to numerator, Y5 to denominator

— Corresponds to 2n + 1 stencil in z, with n the degree of
the polynomial

Use with cubic interpolation, modest digital filtering

Setting W to ratio, Yz to 1 also possible but requires
matrix inversion, more filtering at larger VAt/,,

12
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1.0r

0.8

0.6

04

0.2

“Uniform” Yee C-K
with ”At/AZ = 0.9

k,Az k,Az k,Az k,Az
L|J:1+alsin2(z >+azsin4<z >+a35in6<z >+a4sin8<z )

05 10 15 20 259X

2 2 2 2

ap = {-2.92128, 3.04729, —1.31363, 0.187765}
ag = {-2.54796, 2.20374, —0.709955, 0.054882}

13
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0.080 Analysis (P%ased, f=2) L’
L Simulation{&based,f:ﬂ ',
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\ e
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\
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0.020 - ¥
!
!
N JL._*——O——'//'\
0.000 —— | |

00 02 04 06 08 1.0
v At/Az
e W-based: 4t order polynomials, 2-pass filter

e W_. :ratio of 4™ order polynomials (E, only), 2-pass filter
e Baseline: cubic interpolation, 8-pass filter

9/7/2013 14
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0.080 - \ o
Analysis ((-based, f=2) g ’I’
® Simulation (-based, f=2) \ ’
0.060 - Analysis (P Ex, f=2) '? .‘
= = == Analysis (baseline, f=8) ’f y
3 ¢ Simulation (baseline, f=8) W e
£ 0.040 e
L
0.020 - _—_.__L_f'
0.000 e T - | T |

0.0 0.2 0.4 0.6 0.8 1.0

v At/Az
e W-based: 4t order polynomials, 2-pass filter

e W_. :ratio of 4™ order polynomials (E, only), 2-pass filter
e Baseline: cubic interpolation, 8-pass filter

9/7/2013 15
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 Seek PSATD and FDTD options that increase usable k-
space while preserving instability suppression

 Explore EM potentials version of PSATD

e Add related material to
http://hifweb.lbl.gov/public/BLAST/Godfrey/

9/7/2013 16
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Backup
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Fex /ZAZ

Az = Ax = .3868

#
#

EM modes
2T
e w = +Mod [k,A—t

Spurious beam
modes

Intersections trlgger
numerical Cherenkov
instability

EM modes fold over when At > At, = (Az72 + Ax™2)™%
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Presenter
Presentation Notes
Important PSATD advantages: No dispersion before fold-over, improved stability
EM behavior nonphysical for k>π/Δt, typically should be filtered out
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