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Haber’s Pseudo-Spectral Analytical Time-Domain (PSATD) algorithm [1] offers numerous 
advantages for Particle-In-Cell beam simulations.  It has dispersion-free electromagnetic wave 
propagation and no Courant limit in vacuum.  It also possesses superior numerical stability 
properties [2], especially when combined with Esirkepov’s current deposition algorithm [3].  
Vay’s recent research [4] suggests that it can be parallelized about as well as Finite-Difference 
Time Domain {FDTD) algorithms.   
 
Despite its superior numerical stability, the PSATD algorithm exhibits both the numerical 
Cherenkov instability [5] in cold, relativistic beam simulations and the well-known quasi-
electrostatic numerical instability [6] in cold, non-relativistic beam simulations.  In this talk we 
extend the results of [2] by completely eliminating the primary mode of the numerical Cherenkov 
instability for all beam energies.  Moreover, by using cubic interpolation and modest digitally 
filtering, we simultaneously minimize higher-order aliases of this instability.  Finally, we 
demonstrate that a variant of PSATD eliminates the quasi-electrostatic numerical instability.  
These results, derived from the complete PSATD cold beam numerical dispersion relation, are 
confirmed by two-dimension WARP [7] simulations. 
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Pseudo-Spectral “Analytical” 
Time Domain (PSATD) Algorithm*

• Numerical Cherenkov instability essentially 
eliminated for PSATD relativistic beam simulations

• Points way to suppressing Numerical Cherenkov 
instability in FDTD simulations

• Numerical stability software collection at 
http://hifweb.lbl.gov/public/BLAST/Godfrey/
– Contains this talk, some software; more to come

• Details from brendan.godfrey@ieee.org

*Introduced by I. Haber, et. al., Sixth Conf. Num. Sim. Plas. (1970)
Expanded upon by J.-L. Vay, et. al., J. Comp. Phys. 243, 260-268 (2013).
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Numerical Cherenkov Instability

• Serious issue in 2D, 3D EM PIC simulations of 
relativistic beams (accelerators, astrophysics, etc.)

– Growth rates a large fraction of 𝜔𝜔𝑝𝑝2𝑘𝑘⊥
2∆𝑡𝑡/γ

⁄1 3

• Arises from differing approximations to 𝜔𝜔 − 𝑘𝑘𝑧𝑧𝑣𝑣:

– Lagrangian particle pusher − sin 𝜔𝜔 − 𝑘𝑘𝑧𝑧′𝑣𝑣
∆𝑡𝑡
2

/ ∆𝑡𝑡
2

– Eulerian field solver   ̴ sin 𝜔𝜔 ∆𝑡𝑡
2

/ ∆𝑡𝑡
2
− 𝑣𝑣 sin 𝑘𝑘𝑧𝑧

∆𝑧𝑧
2

/ ∆𝑧𝑧
2

– Difference leads to spurious beam-like normal modes, 
including aliases, which are unstable when interacting with 
light modes 

• Typically addressed by substantial digital filtering
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Generalized PSATD Algorithm

𝑬𝑬𝑛𝑛+1 = 𝑬𝑬𝑛𝑛 − 2𝑖𝑖𝑆𝑆ℎ𝒌𝒌 ×
𝑩𝑩𝑛𝑛+½

𝑘𝑘
−

2𝑆𝑆ℎ𝐶𝐶ℎ𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘

+
2𝑆𝑆ℎ𝐶𝐶ℎ
𝑘𝑘

𝒌𝒌𝒌𝒌 ⋅
𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘2
− 𝒌𝒌𝒌𝒌 ⋅

𝑱𝑱𝑛𝑛+½Δ𝑡𝑡
𝑘𝑘2

𝑩𝑩𝑛𝑛+½ = 𝑩𝑩𝑛𝑛−½ + 2𝑖𝑖𝑆𝑆ℎ𝒌𝒌 ×
𝑬𝑬𝑛𝑛

𝑘𝑘

Particle force: 𝑭𝑭𝑛𝑛 = ψ𝐸𝐸:𝑬𝑬𝑛𝑛 +ψ𝐵𝐵: 𝑩𝑩𝑛𝑛+½+𝑩𝑩𝑛𝑛−½

2𝐶𝐶ℎ

with 𝑆𝑆ℎ = sin 𝑘𝑘Δ𝑡𝑡
2

, 𝐶𝐶ℎ = cos 𝑘𝑘Δ𝑡𝑡
2

• 𝜻𝜻, ψ𝐸𝐸, ψ𝐵𝐵 − diagonal matrices, nine free parameters in 3D
• J assumed to conserve charge

– e.g., Esirkepov algorithm or standard current correction
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Extra Poles in Dispersion Relation

𝐶𝐶0 + 𝑛𝑛�
𝑚𝑚
𝐶𝐶1 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

+𝑛𝑛�
𝑚𝑚

𝐶𝐶2𝑥𝑥 +
𝐶𝐶2𝑧𝑧
𝛾𝛾2

csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣
Δ𝑡𝑡
2

2

+𝑛𝑛�
𝑚𝑚
𝐶𝐶3𝑥𝑥

𝐶𝐶3𝑧𝑧
𝛾𝛾2

csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣
Δ𝑡𝑡
2

3
= 0

with 𝑛𝑛 the beam density divided by γ

and 𝑘𝑘𝑧𝑧′ = 𝑘𝑘𝑧𝑧 + 𝑚𝑚2𝜋𝜋
Δ𝑧𝑧

(aliases)

• Beam modes associated with 𝐶𝐶1,𝐶𝐶2𝑥𝑥 are numerical 
artifacts, trigger numerical Cherenkov instability
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Full Dispersion Relation Growth Rates

• Peak growth rates at 
resonances
– 𝑚𝑚 = 0 dominates for 

∆𝑡𝑡
∆𝑥𝑥

> 2 ∆𝑥𝑥
∆𝑡𝑡𝑐𝑐

− ∆𝑧𝑧
∆𝑥𝑥

– 𝑚𝑚 = −1 dominates 
otherwise

• Parameters
– 𝑣𝑣Δ𝑡𝑡

Δ𝑧𝑧
= 1.2,𝑣𝑣 ≈ 1

– Linear interpolation
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Use digital filtering to eliminate m=0,-1 resonant instabilities
Select free parameters to suppress nonresonant instabilities

0
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Presenter
Presentation Notes
Make distinction between resonant and non-resonant modes, effect of option (b) vs (a) on latterDescribe how modes move as dt/dz changesHigher order interpolation suppresses higher order instabilities at small kDescribe k=π/Δt line



Appropriate ζ, Cubic Interpolation, 
Filtering: Good Stability for 𝑣𝑣Δ𝑡𝑡/Δ𝑧𝑧≥1
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• Choose ζ to set 𝐶𝐶2 = 0, multiply by 𝑠𝑠𝑖𝑖𝑛𝑛 ⁄1 6 𝑘𝑘𝑧𝑧∆𝑧𝑧/2
• Residual instability at 𝑣𝑣Δ𝑡𝑡/Δ𝑧𝑧>1 from 𝑚𝑚 = ±2 aliases



Previous Slide’s Option with Odd Aliases
Eliminated Gives Excellent Results
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• Collect currents with twice usual resolution, discard 
upper half of 𝑘𝑘𝑧𝑧, use rest to push fields

• Interpolation scale-length modestly impacts stability



Using ψ Instead of ζ Also Gives 
Excellent Results

• Choose ζ to set 𝐶𝐶3𝑥𝑥 = 0 (finite-γ third-order pole)
• No need to eliminate odd aliases (lower cost)
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ζ-based Option with 𝐸𝐸𝑧𝑧 Shifted
by Δ𝑧𝑧/2 Suppresses Low-γ Instability
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• Superior at high γ , equally effective at low γ as 
“energy-conserving” algorithms (which also shift 𝐸𝐸𝑧𝑧)

• ψ-based options presumably also work well



Instability Predicted by Birdsall-Langdon
is Price of no Courant Limit
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• Occurs in narrow bands at 𝑘𝑘 ≈ 𝑙𝑙𝑙𝑙/∆𝑡𝑡 (𝑙𝑙 odd)
• Insignificant at relativistic energies
• Plot parameters: ζ-based option, no odd aliases



Ψ-based Option Can be Extended to 
FDTD with Very Good Results

• Choose ψ𝐸𝐸
ψ𝐵𝐵

to set 𝐶𝐶2𝑥𝑥 = 0 (in k-space)

• Approximate by ratio of polynomials in sin2 𝑘𝑘𝑧𝑧Δ𝑧𝑧
2

– Mathematica RationalInterpolation works well
– High accuracy essential ‒ of order 10−6

• Set ψ𝐸𝐸 to numerator, ψ𝐵𝐵 to denominator
– Corresponds to 2𝑛𝑛 + 1 stencil in z, with n the degree of 

the polynomial

• Use with cubic interpolation, modest digital filtering
• Setting ψ𝐸𝐸 to ratio, ψ𝐵𝐵 to 1 also possible but requires 

matrix inversion, more filtering at larger ⁄𝑣𝑣Δ𝑡𝑡
Δ𝑧𝑧
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Sample Ψ-Based Multipliers
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ψ = 1 + 𝛼𝛼1 sin2
𝑘𝑘𝑧𝑧∆𝑧𝑧

2 + 𝛼𝛼2 sin4
𝑘𝑘𝑧𝑧∆𝑧𝑧

2 + 𝛼𝛼3 sin6
𝑘𝑘𝑧𝑧∆𝑧𝑧

2 + 𝛼𝛼4 sin8
𝑘𝑘𝑧𝑧∆𝑧𝑧

2

𝛼𝛼𝐸𝐸 = {−2.92128, 3.04729, −1.31363, 0.187765}
𝛼𝛼𝐵𝐵 = {−2.54796, 2.20374, −0.709955, 0.054882}

“Uniform” Yee C-K 
with ⁄𝑣𝑣Δ𝑡𝑡

Δ𝑧𝑧 = 0.9



“Uniform” Yee C-K Interpolation
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• Ψ-based: 4th order polynomials, 2-pass filter
• Ψ𝐸𝐸𝑥𝑥: ratio of 4th order polynomials (𝐸𝐸𝑥𝑥only), 2-pass filter
• Baseline: cubic interpolation, 8-pass filter 



“Galerkin” Yee C-K Interpolation
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• Ψ-based: 4th order polynomials, 2-pass filter
• Ψ𝐸𝐸𝑥𝑥: ratio of 4th order polynomials (𝐸𝐸𝑥𝑥only), 2-pass filter
• Baseline: cubic interpolation, 8-pass filter 



Next Steps

• Seek PSATD and FDTD options that increase usable k-
space while preserving instability suppression

• Explore EM potentials version of PSATD
• Add related material to 

http://hifweb.lbl.gov/public/BLAST/Godfrey/
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Backup
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PSATD Normal Modes

EM modes

• 𝜔𝜔 = ±Mod 𝑘𝑘, 2𝜋𝜋
∆𝑡𝑡

Spurious beam 
modes

• 𝜔𝜔 = Mod 𝑘𝑘𝑧𝑧′ , 2𝜋𝜋
∆𝑡𝑡

Intersections trigger 
numerical Cherenkov 
instability
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EM modes fold over when ∆𝑡𝑡 > Δ𝑡𝑡𝑐𝑐 = ∆𝑧𝑧−2 + ∆𝑥𝑥−2 −½

𝑣𝑣Δ𝑡𝑡
Δ𝑧𝑧

= 1.2,𝑣𝑣 ≈ 1

𝑘𝑘𝑥𝑥 = ½
𝑙𝑙
∆𝑧𝑧

∆𝑧𝑧 = ∆𝑥𝑥 = .3868

Presenter
Presentation Notes
Important PSATD advantages: No dispersion before fold-over, improved stabilityEM behavior nonphysical for k>π/Δt, typically should be filtered out
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