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Pseudo-spectral methods, which advance fields in Fourier
space, offer a number of advantages over more common
Finite Difference Time Domain (FDTD) PIC algorithms. In
particular, Haber’s Pseudo-Spectral Analytical Time-Domain
(PSATD) algorithm' exhibits dispersion-free propagation and
no Courant limit in vacuum. Moreover, Vay’s recent
research” suggests that it can be parallelized about as well as
FDTD algorithms. As the research presented here shows, it
also has superior numerical stability properties, at least for
relativistic beam transport.

Typically the most serious numerical instability in PIC
simulations of particle beams is the numerical Cherenkov
instability’, arising from coupling between electromagnetic
and nonphysical beam modes. Due to its improved
dispersion properties, the PSATD algorithm is less prone to
this instability. Nonetheless, the instability still occurs, either
directly for time steps larger than the FDTD Courant limit or
through nonphysical beam mode aliases at any time step. In
this talk we derive the PSATD numerical dispersion relation,
present illustrative numerical solutions of it, and compare
them with simulation results from the WARP-FFT PIC code.
Additionally, we compare these findings with our recent
analysis of numerical instabilities in FDTD PIC beam codes”
and, as time permits, with stability properties of other
pseudo-spectral algorithms.
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* Numerical Cherenkov instability largely eliminated
for PSATD relativistic beam simulations

 Numerical stability software collection at
http://hifweb.lbl.gov/public/BLAST/Godfrey/

— Content meager at present

* Algebra omitted from this talk available at
http://arxiv.org/abs/1305.7375v2

e Details from brendan.godfrey@ieee.org

*Introduced by I. Haber, et. al., Sixth Conf. Num. Sim. Plas. (1970)
Expanded upon by J.-L. Vay, et. al., paper 1B-1, PPPS 2013
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Generalized PSATD Algorithm [l
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o ( — diag(ZZJ CXJ Cy) - free parameters
e Jassumed to conserve charge

— e.g., Esirkepov algorithm or standard current correction
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2-D High-y Dispersion Relation "'":}I\“}I
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with €y, = sin (wg) — sin (k At) k, =k, + mZ
2 2 Az
 Dispersion relation reduces to w? — k? —n = 0 in
continuum limit (n is density divided by y)
e Beam modes are numerical artifacts, trigger
numerical Cherenkov instability

— May have other deleterious effects
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(, Can Reduce Instability —
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e Option (a) - (, = kz%cot (kz %)
A A
(, = kxyxcot (kx %)
* Option(b)- (=0 =1

e Option (c) - ¢, to suppress m = 0 instability
— Choose (, so that C, = 0 at resonance
— Verify (, > 1 as k — 0 (it does)
— Set (,= 0 when it falls outside1 = (, = 0
— Choose any reasonable (,, — here, (,, = (,

In general, 1 = ¢ = 0 necessary to avoid new instabilities
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PSATD Normal Modes ﬂ ¢
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Full Dispersion Relation Growth Rates “] :
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e Peak growth rates at

Fresonances
| — m = 0 dominates for
i L (Ax B Az)
Ax At Ax
0.2 — m = —1 dominates
otherwise

0.1 ¢ Parameters

VAt
—-—=12,v=1
0 Az

b — Option (a)

Numerical Cherenkov instability dominant resonances typically lie at large k,At/2
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(., C, and Digital Filter Plots —T
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e Evaluated forE = 1.2
Az

e Ten-pass bilinear filter shown for comparison

Option (a) — ¢, Option (¢) — .,{ Sqrt[Filter]

C,, Cy filter transverse current components only
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@Linear Interpolation, No Filter, y=130 ceeee|
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e Option (c) suppresses m = 0 instability only
e Option (d) — conventional current deposition and
correction — included for comparison
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* Numerical Cherenkov instability largely eliminated
e Option (c) residual growth a finite-y effect
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@ Option (c), Cubic Interpolation, KI ;

Variable Width Sharp Filter, y=130 EEEE
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! " Simulation (c)
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e Option (c) filter from last slide kept as baseline
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> WARP Simulations Confirm Numerical xlw

Cherenkov Instability Suppression — EEEEgE

107 = 2D - smoothing - cubic deposition
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 Numerical energy growth in 3 cm, y=13 LPA segment
e FDTD-CK simulation results included for comparison
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@}/ Analysis Also Valid at Lowy [l
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* Performed to identify errors not visible at high y
e Electrostatic numerical instability dominates at low y
e Option (b) used
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PSATD with Potentials ,-—,,j}”;a]

(Use for Pushing Canonical Momenta) BERKELEY LAB
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 Gauge invariance: One of four potentials {4, ®} can be
specified arbitrarily
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First Attempt Partly Successful Sl
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 Choose gauge & = vA, cos (a) Azt)

e Resulting high-y dispersion relation:

At At k,At At
Co Sin (oo > ) [sm (oo 7) — COoS (w —)]
+nz C0+nz Clcsc[(oo k’v)—]—O

 Reduces order of spurious beam mode from 2 to 1

* |ntroduces spurious vacuum mode

() _ ket
dan| w > = >
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@Linear Interpolation, No Filter, y=130 Etlk

0.40 -
0.30 - .
Gauge Analysis (a)

2 0.20 - = = = Gauge Analysis (b)
e Gauge Analysis (c)
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e Growth reduced by % at small vAt/Az, by ¥ otherwise
e Options defined as before, but details of (c) differ
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@ Cubic Interpolation, Sharp Filter, y=130 N| '
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e J] =0 for min |—,— =1
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 New instability dominates (but vanishes for @ < 0.6)

6/18/2013

17



6/18/2013
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Low growth rate
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Bad location

w = k,v

Also occurs in PSTD

Parameters
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— Option (b)
— Sharp filter, a = 1
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e Obtain Option (c) (,, (, for finite y
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Implement ® = vA4,algorithm in WARP, validate
results

Understand, suppress new instability
Explore other PSATD variants
Generalize to FDTD

19
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BACKUP
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Analytical Approximations Available ECRuls
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e Resonant instability - I' = ‘ "

Z

— Typically so strong it must be filtered digitally
— But, not difficult to do

\/4nCOC2 —le C12

 Nonresonant instability -I' =
CoAt

— Not so strong, but often lies at small k,At/2
— Filtering more difficult to accomplish

— So, combine filtering with making nC12 > (CoCy

* Eliminating nonresonant instability the focus of talk
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(,, ¢, and Digital Filter Plots e
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* (,at k, = 0 onleft, (, at k, = 0 on right

e Ten-pass bilinear filter shown for comparison
At

* Evaluated for — = 2
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C,, Cy filter transverse current components only
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Cubic Interpolation, Filter, y=130 [zl
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e Growth infinitesimal for vAt/Az < 1.3
 New instability increases option (c) growth at larger
vAt/Az, but still very small
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