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Pseudo-spectral methods, which advance fields in Fourier 

space, offer a number of advantages over more common 

Finite Difference Time Domain (FDTD) PIC algorithms.  In 

particular, Haber’s Pseudo-Spectral Analytical Time-Domain 

(PSATD) algorithm
1
 exhibits dispersion-free propagation and 

no Courant limit in vacuum.  Moreover, Vay’s recent 

research
2
 suggests that it can be parallelized about as well as 

FDTD algorithms.  As the research presented here shows, it 

also has superior numerical stability properties, at least for 

relativistic beam transport. 

 

Typically the most serious numerical instability in PIC 

simulations of particle beams is the numerical Cherenkov 

instability
3
, arising from coupling between electromagnetic 

and nonphysical beam modes.  Due to its improved 

dispersion properties, the PSATD algorithm is less prone to 

this instability.  Nonetheless, the instability still occurs, either 

directly for time steps larger than the FDTD Courant limit or 

through nonphysical beam mode aliases at any time step.  In 

this talk we derive the PSATD numerical dispersion relation, 

present illustrative numerical solutions of it, and compare 

them with simulation results from the WARP-FFT PIC code.  

Additionally, we compare these findings with our recent 

analysis of numerical instabilities in FDTD PIC beam codes
4
 

and, as time permits, with stability properties of other 

pseudo-spectral algorithms. 
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Pseudo-Spectral “Analytical” 
Time Domain (PSATD) Algorithm*

• Numerical Cherenkov instability largely eliminated 
for PSATD relativistic beam simulations

• Numerical stability software collection at 
http://hifweb.lbl.gov/public/BLAST/Godfrey/
– Content meager at present

• Algebra omitted from this talk available at 
http://arxiv.org/abs/1305.7375v2

• Details from brendan.godfrey@ieee.org

*Introduced by I. Haber, et. al., Sixth Conf. Num. Sim. Plas. (1970)
Expanded upon by J.-L. Vay, et. al., paper 1B-1, PPPS 2013
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Generalized PSATD Algorithm

𝑬𝑬𝑛𝑛+1 = 𝑬𝑬𝑛𝑛 − 2𝑖𝑖𝑆𝑆ℎ𝒌𝒌 ×
𝑩𝑩𝑛𝑛+½

𝑘𝑘
−

2𝑆𝑆ℎ𝐶𝐶ℎ𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘

+
2𝑆𝑆ℎ𝐶𝐶ℎ
𝑘𝑘

𝒌𝒌𝒌𝒌 ⋅
𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘2
− 𝒌𝒌𝒌𝒌 ⋅

𝑱𝑱𝑛𝑛+½Δ𝑡𝑡
𝑘𝑘2

𝑩𝑩𝑛𝑛+½ = 𝑩𝑩𝑛𝑛−½ + 2𝑖𝑖𝑆𝑆ℎ𝒌𝒌 ×
𝑬𝑬𝑛𝑛

𝑘𝑘

with 𝑩𝑩𝑛𝑛 = 𝑩𝑩𝑛𝑛+½+𝑩𝑩𝑛𝑛−½

2𝐶𝐶ℎ
, 𝑆𝑆ℎ = sin 𝑘𝑘Δ𝑡𝑡

2
, 𝐶𝐶ℎ = cos 𝑘𝑘Δ𝑡𝑡

2

• 𝜻𝜻 = diag ζ𝑧𝑧 , ζ𝑥𝑥 , ζ𝑦𝑦 - free parameters
• J assumed to conserve charge

– e.g., Esirkepov algorithm or standard current correction
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2-D High-γ Dispersion Relation

𝐶𝐶0 + 𝑛𝑛�
𝑚𝑚
𝐶𝐶1 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

+𝑛𝑛�
𝑚𝑚
𝐶𝐶2 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

2
= 0

with 𝐶𝐶0 = sin ωΔ𝑡𝑡
2

2
− sin 𝑘𝑘 Δ𝑡𝑡

2

2
, 𝑘𝑘𝑧𝑧′ = 𝑘𝑘𝑧𝑧 + 𝑚𝑚2𝜋𝜋

Δ𝑧𝑧

• Dispersion relation reduces to ω2 − 𝑘𝑘2 − 𝑛𝑛 = 0 in 
continuum limit (n is density divided by γ)

• Beam modes are numerical artifacts, trigger 
numerical Cherenkov instability
– May have other deleterious effects
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ζ𝑧𝑧 Can Reduce Instability

• Option (a) - ζ𝑧𝑧 = 𝑘𝑘𝑧𝑧
∆𝑧𝑧
2

cot 𝑘𝑘𝑧𝑧
∆𝑧𝑧
2

ζ𝑥𝑥 = 𝑘𝑘𝑥𝑥
∆𝑥𝑥
2

cot 𝑘𝑘𝑥𝑥
∆𝑥𝑥
2

• Option (b) - ζ𝑧𝑧 = ζ𝑥𝑥 = 1
• Option (c) - ζ𝑧𝑧 to suppress 𝑚𝑚 = 0 instability

– Choose ζ𝑧𝑧 so that 𝐶𝐶2 = 0 at resonance
– Verify ζ𝑧𝑧 → 1 as 𝑘𝑘 → 0 (it does)
– Set ζ𝑧𝑧= 0 when it falls outside 1 ≥ ζ𝑧𝑧 ≥ 0
– Choose any reasonable ζ𝑥𝑥 ‒ here, ζ𝑥𝑥 = ζ𝑧𝑧
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In general, 1 ≥ ζ ≥ 0 necessary to avoid new instabilities



PSATD Normal Modes

Normal Modes

• 𝜔𝜔 = ±Mod 𝑘𝑘, 2𝜋𝜋
∆𝑡𝑡

• 𝜔𝜔 = Mod 𝑘𝑘𝑧𝑧 , 2𝜋𝜋
∆𝑡𝑡

Parameters

• 𝑣𝑣Δ𝑡𝑡
Δ𝑧𝑧

= 1.2, 𝑣𝑣 ≈ 1

• 𝑘𝑘𝑥𝑥 = ½ 𝜋𝜋
∆𝑧𝑧

• ∆𝑧𝑧 = ∆𝑥𝑥 = .3868
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EM modes fold over when ∆𝑡𝑡 > Δ𝑡𝑡𝑐𝑐 = ∆𝑧𝑧−2 + ∆𝑥𝑥−2 −½



Full Dispersion Relation Growth Rates

• Peak growth rates at 
resonances
– 𝑚𝑚 = 0 dominates for 

∆𝑡𝑡
∆𝑥𝑥

> 2 ∆𝑥𝑥
∆𝑡𝑡𝑐𝑐

− ∆𝑧𝑧
∆𝑥𝑥

– 𝑚𝑚 = −1 dominates 
otherwise

• Parameters
– 𝑣𝑣Δ𝑡𝑡

Δ𝑧𝑧
= 1.2,𝑣𝑣 ≈ 1

– Option (a)
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Numerical Cherenkov instability dominant resonances typically lie at large 𝑘𝑘𝑧𝑧∆𝑡𝑡/2

0

+1 -1

+1

-1



ζ𝑧𝑧, ζ𝑥𝑥 and Digital Filter Plots

6/18/2013 8

• Evaluated for ∆𝑡𝑡
∆𝑧𝑧

= 1.2
• Ten-pass bilinear filter shown for comparison

ζ𝑧𝑧, ζ𝑥𝑥 filter transverse current components only

Red=1
Purple=0



Linear Interpolation, No Filter, γ=130
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• Option (c) suppresses 𝑚𝑚 = 0 instability only
• Option (d) – conventional current deposition and 

correction – included for comparison



Cubic Interpolation, Filter, γ=130
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• Numerical Cherenkov instability largely eliminated
• Option (c) residual growth a finite-γ effect



Option (c), Cubic Interpolation,
Variable Width Sharp Filter, γ=130
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• 𝑱𝑱 = 0 for 𝑘𝑘 > α min 𝜋𝜋
∆𝑡𝑡

, 𝜋𝜋
∆𝑧𝑧

, α values in legend
• Option (c) filter from last slide kept as baseline



WARP Simulations Confirm Numerical 
Cherenkov Instability Suppression
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• Numerical energy growth in 3 cm, γ=13 LPA segment
• FDTD-CK simulation results included for comparison



Analysis Also Valid at Low γ
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• Performed to identify errors not visible at high γ
• Electrostatic numerical instability dominates at low γ
• Option (b) used



PSATD with Potentials
(Use for Pushing Canonical Momenta)

𝑨𝑨𝑛𝑛+ �3 2 = 2𝑨𝑨𝑛𝑛+½ − 𝑨𝑨𝑛𝑛−½

+𝒌𝒌 4𝑆𝑆ℎ2𝒌𝒌 ⋅
𝑨𝑨𝑛𝑛+½

𝑘𝑘2
− 𝑖𝑖 Φ𝒏𝒏+𝟏𝟏 − Φ𝒏𝒏 Δ𝑡𝑡

+
4𝑆𝑆ℎ2𝐶𝐶ℎ𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘2
−

4𝑆𝑆ℎ2𝐶𝐶ℎ
𝑘𝑘2

𝒌𝒌𝒌𝒌 ⋅
𝜻𝜻: 𝑱𝑱𝑛𝑛+½

𝑘𝑘2
+ 𝒌𝒌𝒌𝒌 ⋅

𝑱𝑱𝑛𝑛+½Δ𝑡𝑡
𝑘𝑘3

𝑬𝑬𝑛𝑛 = − 𝑨𝑨𝑛𝑛+½ − 𝑨𝑨𝑛𝑛−½ − 𝑖𝑖𝒌𝒌Φ𝒏𝒏Δ𝑡𝑡 / 2𝑆𝑆ℎ/𝑘𝑘

𝑩𝑩𝑛𝑛+½ = −𝑖𝑖𝒌𝒌 × 𝑨𝑨𝑛𝑛+½

• Gauge invariance: One of four potentials {𝑨𝑨, Φ} can be 
specified arbitrarily
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First Attempt Partly Successful

• Choose gauge Φ = 𝑣𝑣𝐴𝐴𝑧𝑧 cos 𝜔𝜔 ∆𝑡𝑡
2

• Resulting high-γ dispersion relation:

𝐶𝐶0 sin ω
Δ𝑡𝑡
2

sin ω
Δ𝑡𝑡
2

−
𝑘𝑘𝑧𝑧Δ𝑡𝑡

2
cos ω

Δ𝑡𝑡
2

+ 𝑛𝑛�
𝑚𝑚
�𝐶𝐶0 + 𝑛𝑛�

𝑚𝑚
�𝐶𝐶1 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

= 0

• Reduces order of spurious beam mode from 2 to 1
• Introduces spurious vacuum mode

tan ω
Δ𝑡𝑡
2

=
𝑘𝑘𝑧𝑧Δ𝑡𝑡

2
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Linear Interpolation, No Filter, γ=130
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• Growth reduced by ¼ at small 𝑣𝑣Δ𝑡𝑡/Δ𝑧𝑧, by ½ otherwise
• Options defined as before, but details of (c) differ



Cubic Interpolation, Sharp Filter, γ=130
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• 𝑱𝑱 = 0 for 𝑘𝑘 > α min 𝜋𝜋
∆𝑡𝑡

, 𝜋𝜋
∆𝑧𝑧

, 𝛼𝛼 = 1
• New instability dominates (but vanishes for 𝛼𝛼 < 0.6) 



New, but Weak, Instability Occurs

• Low growth rate
• Small k range
• Bad location
• 𝜔𝜔 ≈ 𝑘𝑘𝑧𝑧𝑣𝑣
• Also occurs in PSTD
• Parameters

– 𝑣𝑣Δ𝑡𝑡
Δ𝑧𝑧

= 1.2, 𝛾𝛾 = 130
– Option (b)
– Sharp filter, 𝛼𝛼 = 1
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Next Steps

• Obtain Option (c) ζ𝑧𝑧 , ζ𝑥𝑥for finite γ
• Implement Φ = 𝑣𝑣𝐴𝐴𝑧𝑧algorithm in WARP, validate 

results
• Understand, suppress new instability
• Explore other PSATD variants
• Generalize to FDTD

6/18/2013 19



BACKUP
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Analytical Approximations Available

• Resonant instability - Γ ≈ 𝑛𝑛𝐶𝐶2∆𝑡𝑡
4𝑘𝑘𝑧𝑧

⅓
/∆𝑡𝑡

– Typically so strong it must be filtered digitally
– But, not difficult to do

• Nonresonant instability - Γ ≈
4𝑛𝑛𝐶𝐶0𝐶𝐶2−𝑛𝑛2𝐶𝐶12

𝐶𝐶0∆𝑡𝑡
– Not so strong, but often lies at small 𝑘𝑘𝑧𝑧∆𝑡𝑡/2
– Filtering more difficult to accomplish
– So, combine filtering with making 𝑛𝑛𝐶𝐶12 > 𝐶𝐶0𝐶𝐶2

• Eliminating nonresonant instability the focus of talk
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ζ𝑧𝑧, ζ𝑥𝑥 and Digital Filter Plots
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• ζ𝑧𝑧 at 𝑘𝑘𝑥𝑥 = 0 on left, ζ𝑥𝑥 at 𝑘𝑘𝑧𝑧 = 0 on right
• Ten-pass bilinear filter shown for comparison
• Evaluated for ∆𝑡𝑡

∆𝑧𝑧
= 2

ζ𝑧𝑧, ζ𝑥𝑥 filter transverse current components only



Cubic Interpolation, Filter, γ=130
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• Growth infinitesimal for 𝑣𝑣Δ𝑡𝑡/Δ𝑧𝑧 < 1.3
• New instability increases option (c) growth at larger 
𝑣𝑣Δ𝑡𝑡/Δ𝑧𝑧, but still very small
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