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Particle-in-Cell Simulation Codes

• Solve Vlasov equation by computing particles’ 
trajectories in their self-consistent fields

• Calculate particle trajectories from impulse forces

– 𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡

= 𝑣𝑣, 𝑑𝑑𝛾𝛾𝛾𝛾
𝑑𝑑𝑡𝑡

= ∑𝑛𝑛,𝑙𝑙 𝐹𝐹𝑙𝑙𝑛𝑛 𝑊𝑊 𝑧𝑧 − 𝑙𝑙∆𝑧𝑧 𝛿𝛿 𝑡𝑡 − 𝑛𝑛∆𝑡𝑡

• Calculate currents by interpolation to space-time grid
– 𝐽𝐽𝑙𝑙𝑛𝑛+½ = ∑𝑝𝑝 𝑣𝑣 𝑉𝑉 𝑧𝑧 − 𝑙𝑙∆𝑧𝑧 |𝑡𝑡=(𝑛𝑛+½)∆𝑡𝑡

– W , 𝑉𝑉 are interpolation functions (typically splines)

• Better yet, Esirkepov’s charge-conserving algorithm

– 𝜌𝜌𝑙𝑙+½
𝑛𝑛+1 − 𝜌𝜌𝑙𝑙+½

𝑛𝑛 = 𝐽𝐽𝑙𝑙+1𝑛𝑛+½−𝐽𝐽𝑙𝑙𝑛𝑛+½ ∆𝑡𝑡
∆𝑧𝑧

Sample equations in 1D, generalization to 3D straightforward



Finite Difference Time Domain
Field Solver (FDTD)

• Calculate fields on “Yee” grid
– B fields at cell centers, offset by ⁄∆𝑡𝑡 2

– Currents located with E, offset by ⁄∆𝑡𝑡 2

– 2D example at right

• Staggered fields give 2nd order accuracy (1D example)

– 𝐸𝐸𝑙𝑙𝑛𝑛+1 = 𝐸𝐸𝑙𝑙𝑛𝑛 − 𝐵𝐵𝑙𝑙+½
𝑛𝑛+½ − 𝐵𝐵𝑙𝑙−½

𝑛𝑛+½ ∆𝑡𝑡
∆𝑧𝑧
− 𝐽𝐽𝑙𝑙𝑛𝑛+½∆𝑡𝑡

– 𝐵𝐵𝑙𝑙+½
𝑛𝑛+½ = 𝐵𝐵𝑙𝑙+½

𝑛𝑛−½ − 𝐸𝐸𝑙𝑙+1𝑛𝑛 − 𝐸𝐸𝑙𝑙𝑛𝑛
∆𝑡𝑡
∆𝑧𝑧

• More complex expressions yield improved dispersion
– E. g., Cole-Karkkainen and Lehe algorithms
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Pseudo-Spectral Time Domain
Field Solver (PSTD)

• Fields advanced in Fourier space, but
– Fields applied to particles in real space
– Currents also determined in real space
– FFTs required at each time step
– 2D sample mesh at right
– B fields at cell corners, offset by ⁄∆𝑡𝑡 2

• Fields 2nd order accurate in time, exact in space
– 𝑬𝑬𝑛𝑛+1 = 𝑬𝑬𝑛𝑛 − 𝑖𝑖𝒌𝒌 × 𝑩𝑩𝑛𝑛+½∆𝑡𝑡 − 𝐽𝐽𝑘𝑘𝑛𝑛+½∆𝑡𝑡
– 𝑩𝑩𝑛𝑛+½ = 𝑩𝑩𝑛𝑛−½ + 𝑖𝑖𝒌𝒌 × 𝑬𝑬𝑛𝑛∆𝑡𝑡

• Full Spectral Field Solver bypasses spatial grid but 
requires Fourier transform at each particle position
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Pseudo-Spectral Analytical 
Time Domain Field Solver (PSATD)

• Obtained by analytically integrating Maxwell’s equations 
over ∆𝑡𝑡, assuming constant currents

• Fields exact in time and space (for constant currents)

𝑬𝑬𝑛𝑛+1 = 𝑬𝑬𝑛𝑛 − 2𝑖𝑖𝑆𝑆ℎ𝒌𝒌 ×
𝑩𝑩𝑛𝑛+½

𝑘𝑘
−

2𝑆𝑆ℎ𝐶𝐶ℎ𝑱𝑱𝑛𝑛+½

𝑘𝑘

+
2𝑆𝑆ℎ𝐶𝐶ℎ
𝑘𝑘

𝒌𝒌𝒌𝒌 ⋅
𝑱𝑱𝑛𝑛+½

𝑘𝑘2
− 𝒌𝒌𝒌𝒌 ⋅

𝑱𝑱𝑛𝑛+½Δ𝑡𝑡
𝑘𝑘2

with 𝑩𝑩𝑛𝑛 = 𝑩𝑩𝑛𝑛+½+𝑩𝑩𝑛𝑛−½

2𝐶𝐶ℎ
, 𝑆𝑆ℎ = sin 𝑘𝑘Δ𝑡𝑡

2
, 𝐶𝐶ℎ = cos 𝑘𝑘Δ𝑡𝑡

2

• Many desirable traits but, like PSTD, requires global FFTs
– Jean-Luc Vay’s talk offers potential solutions
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EM Field Sub-Cycling

• Advancing fields with short time step sometimes 
advantageous: � tfield = � tpart/N
– Sub-cycling fields numerically is straightforward, of course

• Analytically, if 𝐹𝐹𝑛𝑛+1 = 𝑀𝑀:𝐹𝐹𝑛𝑛 + 𝑆𝑆 for N=1, then
𝐹𝐹𝑛𝑛+1 = 𝑀𝑀𝑁𝑁:𝐹𝐹𝑛𝑛 + ∑𝑖𝑖=0𝑁𝑁−1𝑀𝑀𝑖𝑖 : 𝑆𝑆 for any N
(n is particle time step)

• Easily evaluated for PSTD
– Useful for numerical analysis
– PSATD obtained in limit 𝑁𝑁 → ∞

• Applications discussed in 
Jean-Luc Vay’s talk
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Courant Limit on Time Step

• EM dispersion relation:  sin𝜔𝜔Δtpart
2𝑁𝑁

= 𝑓𝑓 Δ𝑥𝑥𝑖𝑖
Δtpart
2𝑁𝑁

– Field solver stable only for Δtpart < 2𝑁𝑁/𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

• Sample Courant limits (Δ𝑥𝑥𝑖𝑖 equal; d - dimension)
– PSTD Δtpart/∆𝑧𝑧 < 2𝑁𝑁/𝜋𝜋 𝑑𝑑 {0.63, 0.45, 0.36}N

– FDTD (Yee) Δtpart/∆𝑧𝑧 < 𝑁𝑁/ 𝑑𝑑 {1.00, 0.70, 0.57}N
– FDTC (C-K) Δtpart/∆𝑧𝑧 < 𝑁𝑁
– PSATD no limit

• But, EM dispersion, as seen by particles, distorted for 
Δtpart/∆𝑧𝑧 > 1/ 𝑑𝑑 (more or less)
• Creates practical limit of Δtpart/∆𝑧𝑧 < 1.5

Note: finite plasma density makes Courant limit more restrictive
7



Sources of Inaccuracy

• Small number of particles per cell
– Numerical noise

• Particle, field solvers typically second-order accurate
– Errors of order ωΔt 2, 𝑘𝑘Δz 2, with � , 𝑘𝑘 the frequency, 

wavenumber of physical phenomena of interest

• Particles support more wavenumbers than fields do
– Numerical aliases     𝑘𝑘𝑃𝑃 = 𝑘𝑘𝐹𝐹 + 2𝜋𝜋𝜋𝜋/∆𝑧𝑧 integer m
– Aliases cause instabilities (e.g., Landau growth)

• Mismatch between Eulerian field solver, Lagrangian 
particle pusher
– Spurious mode coupling: numerical Cherenkov instability

8



PIC Linear Theory in Two Slides (1)

• Linearize Vlasov equation from particle equations

– 𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡

+ 𝑣𝑣 𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= −𝜕𝜕𝑓𝑓0

𝜕𝜕𝛾𝛾
∑𝑛𝑛,𝑙𝑙 𝐹𝐹𝑙𝑙𝑛𝑛 𝑊𝑊 𝑧𝑧 − 𝑙𝑙∆𝑧𝑧 𝛿𝛿 𝑡𝑡 − 𝑛𝑛∆𝑡𝑡

• Fourier transform linearized Vlasov equation

– 𝑓𝑓 = 𝑖𝑖 𝜕𝜕𝑓𝑓
0

𝜕𝜕𝛾𝛾
𝐹𝐹𝑘𝑘
𝜔𝜔𝑊𝑊−𝑘𝑘′

𝜔𝜔′−𝑘𝑘′𝛾𝛾
with 𝜔𝜔′ = ω + 𝑛𝑛 2𝜋𝜋

∆𝑡𝑡
, 𝑘𝑘′ = 𝑘𝑘 + 𝜋𝜋2𝜋𝜋

∆𝑧𝑧

• Integrate over 𝑓𝑓 to obtain current

– 𝐽𝐽𝑘𝑘𝜔𝜔 = 𝑖𝑖 ∫ 𝑑𝑑𝑣𝑣 𝜕𝜕𝑓𝑓0

𝜕𝜕𝛾𝛾
𝑣𝑣 ∑𝑛𝑛,𝑚𝑚 −1 𝑛𝑛 𝑉𝑉𝑘𝑘′𝐹𝐹𝑘𝑘

𝜔𝜔𝑊𝑊−𝑘𝑘′

𝜔𝜔′−𝑘𝑘′𝛾𝛾

• Simplify by performing sum over 𝑛𝑛

– 𝐽𝐽𝑘𝑘𝜔𝜔 = 𝑖𝑖 ∫ 𝑑𝑑𝑣𝑣 𝜕𝜕𝑓𝑓0

𝜕𝜕𝛾𝛾
𝑣𝑣𝐹𝐹𝑘𝑘𝜔𝜔 ∑𝑚𝑚𝑉𝑉𝑘𝑘′𝑊𝑊−𝑘𝑘′ cot 𝜔𝜔 − 𝑘𝑘′𝑣𝑣 ∆𝑡𝑡

2
∆𝑡𝑡
2



PIC Linear Theory in Two Slides (2)

• Fourier transform FDTD EM equations on space-time 
grid and insert J to obtain dispersion relation

– sin 𝜔𝜔 ⁄∆𝑡𝑡 2
⁄∆𝑡𝑡 2

2
− sin 𝑘𝑘 ⁄∆𝑧𝑧 2

⁄∆𝑧𝑧 2

2
= ∫𝑑𝑑𝑣𝑣 𝜕𝜕𝑓𝑓0

𝜕𝜕𝛾𝛾
𝑣𝑣 �

– sin 𝜔𝜔 ⁄∆𝑡𝑡 2
⁄∆𝑡𝑡 2

− sin 𝑘𝑘 ⁄∆𝑧𝑧 2
⁄∆𝑧𝑧 2

𝑣𝑣 ∑𝑚𝑚
𝑉𝑉𝑘𝑘′𝑊𝑊−𝑘𝑘′

∆𝑡𝑡
2

tan 𝜔𝜔−𝑘𝑘′𝛾𝛾 ∆𝑡𝑡
2

– Numerous simplifications but qualitatively correct
– Similar expressions for PSTD, PSATD field solvers

• Numerical instabilities can arise from
– 𝜔𝜔 − 𝑘𝑘′𝑣𝑣 modes interacting with EM modes
– 𝑉𝑉𝑘𝑘′𝑊𝑊−𝑘𝑘′ coefficient with wrong sign
– Courant condition violation



Various Ways to Control
Numerical Instabilities

• Filter short wavelength modes
– Numerical instabilities usually at short wavelengths
– Field, current smoothing (with (¼,½,¼) stencil for FDTD)

• Use higher order interpolation
– 𝑉𝑉𝑘𝑘′𝑊𝑊−𝑘𝑘′ decreases as 𝑘𝑘𝑘−4 with linear interpolation, 

as 𝑘𝑘𝑘−8 with cubic interpolation

• Choose simulation parameters wisely
– E.g., numerical Cherenkov instability “magic time steps”

• Modify algorithm 
– Helps to know numerical growth rates in advance



Numerical Cherenkov Instability

• Serious issue in 2D, 3D EM PIC simulations of relativistic 
beams (accelerators, astrophysics, etc.)

– Growth rates a large fraction of 𝜔𝜔𝑝𝑝2𝑘𝑘⊥
2∆𝑧𝑧

⁄1 3

• High- 𝛾𝛾 dispersion relation 

𝐶𝐶0 + 𝑛𝑛�
𝑚𝑚
𝐶𝐶1 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

+𝑛𝑛�
𝑚𝑚
𝐶𝐶2𝑚𝑚 csc ω− 𝑘𝑘𝑧𝑧′𝑣𝑣

Δ𝑡𝑡
2

2
= 0

with 𝑘𝑘𝑧𝑧′ = 𝑘𝑘𝑧𝑧 + 𝜋𝜋2𝜋𝜋
Δ𝑧𝑧

(aliases)
• Beam modes associated with terms 𝐶𝐶1,𝐶𝐶2𝑚𝑚 are numerical 

artifacts, trigger numerical Cherenkov instability
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PSATD Normal Modes, Resonances

𝑣𝑣Δ𝑡𝑡
Δ𝑧𝑧

= 1.2,𝑣𝑣 ≈ 1



Full Dispersion Relation Growth Rates

• Peak growth rates at 
resonances
– 𝜋𝜋 = 0 dominates for 

∆𝑡𝑡
∆𝑚𝑚

> 2 ∆𝑚𝑚
∆𝑡𝑡𝑐𝑐

− ∆𝑧𝑧
∆𝑚𝑚

– 𝜋𝜋 = −1 dominates 
otherwise

• Parameters
– PSATD

– 𝛾𝛾Δ𝑡𝑡
Δ𝑧𝑧

= 1.2,𝑣𝑣 ≈ 1
– Linear interpolation

Numerical Cherenkov instability dominant resonances typically lie at large 𝑘𝑘𝑧𝑧∆𝑡𝑡/2

0

+1 -1

+1

-1
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Instability Suppression Strategy

• Filter to eliminate resonant instabilities at large k
– Multi-pass bilinear filter, or

– Sharp-cutoff filter, 𝑘𝑘 < 𝛼𝛼 𝑀𝑀𝑖𝑖𝑛𝑛 𝜋𝜋
𝛾𝛾 ∆𝑡𝑡

, 𝜋𝜋
∆𝑧𝑧

, or

– Interpolate current on 2x mesh in z, discard upper half of 
𝑘𝑘𝑧𝑧 (effective but more expensive)

• Modify fields or currents to suppress 𝜋𝜋 = 0 non-
resonant instabilities at smaller k
– Set 𝐶𝐶2𝑚𝑚 = 0 at 𝜔𝜔 = 𝑘𝑘𝑧𝑧, or
– Various other options; see references on final slide



Two-Pass Filter, Field Correction
Yield Good FDTD Stability

• Scale 𝐸𝐸┴ by ψ𝐸𝐸, 𝐵𝐵┴ by ψ𝐵𝐵
– As seen by particles

• Choose ψ𝐸𝐸
ψ𝐵𝐵

to set 𝐶𝐶2𝑚𝑚 = 0
(in k-space)

• Approximate by 4th order 
ratio of polynomials in 
sin2 𝑘𝑘𝑧𝑧Δ𝑧𝑧

2
• Set ψ𝐸𝐸 to numerator, ψ𝐵𝐵 to 

denominator of ratio

• Implement sin2 𝑘𝑘𝑧𝑧Δ𝑧𝑧
2

using 
(-¼,½,-¼) stencil in z



Field Correction, One-Pass Filter
Stabilize WARP FDTD LPA Simulations

Same simulations without field correction severely unstable, produce meaningless results
(Uniform interpolation simulation stable at “magic time step” ⁄𝑣𝑣∆𝑡𝑡 ∆𝑧𝑧 = 0.5)



Two-Pass Truncated Filter, Field Correction
Yields Acceptable Sub-Cycled PSTD Stability

• Scale 𝐸𝐸┴ by ψ𝐸𝐸, 𝐵𝐵┴ by ψ𝐵𝐵
• ψ𝐸𝐸 = 𝑘𝑘𝑧𝑧𝛾𝛾∆𝑡𝑡

2
cot 𝑘𝑘𝑧𝑧𝛾𝛾∆𝑡𝑡

2

• ψ𝐵𝐵 = 𝑘𝑘∆𝑡𝑡
2

cot 𝜃𝜃∆𝑡𝑡
2

sec 𝜃𝜃∆𝑡𝑡
2𝑁𝑁

with sin 𝜃𝜃∆𝑡𝑡
2𝑁𝑁

≡ 𝑘𝑘∆𝑡𝑡
2𝑁𝑁

• Several alternative PSTD, 
PSATD stabilization options
– Instability growth 10x larger 

without stabilization



Current Correction, Eight-Pass Filter
Stabilize WARP PSTD, PSATD Simulations

𝛾𝛾 = 13 PSTD, PSATD energy conservation simulations with cubic interpolation
FDTD “magic time step” results provided for comparison 
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Pseudo-Spectral Arbitrary Order
Time Domain Algorithm (PSAOTD)

• Research underway on 
PSTD with arbitrary 
order approximation to 
spatial derivatives

• Sub-cycling included
• Stabilization straight-

forward but not yet 
analyzed

Hear Jean-Luc Vay’s talk for details and applications
20



Summary

• PIC simulations a power tool for particle beam, 
microwave source, plasma research

• History of steady progress
– PIC basics well established since early 70’s (see text by 

Birdsall and Langdon)
– Continuous advances to the present (e.g., Esirkepov’s

current conservation algorithm)
– Numerical instabilities largely eliminated

• Advanced accelerator concepts stimulating new 
research in PIC methodology
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Software and Slides

• Software and other supporting material at 
http://hifweb.lbl.gov/public/BLAST/Godfrey/
– FDTD – Solves FDTD numerical dispersion relation
– Resonances – Plots normal modes and resonances
– RatIntCoef – Computes FDTD ψ polynomials
– Mathematica CDF Player needed (free)
– Contact Brendan.Godfrey@ieee.org

• Various references also available there
– Including these slides

• More material to be added over next several months

http://hifweb.lbl.gov/public/BLAST/Godfrey/
mailto:Brendan.Godfrey@ieee.org
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