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HEAVY ION INERTIAL FUSION ENERGY
Description

The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass ~100 amu and kinetic energy ≥ 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of:

· the driver, projected to be robust and efficient; see “Heavy Ion Accelerator Drivers.”
· the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), & have metal exteriors that enable injection at ~10 Hz; see “IFE Target Designs.”
· the near-classical ion energy deposition in the targets; see “Beam-Plasma Interactions.”
· the magnetic final lens, robust against damage; see “Final Optics—Heavy Ion Beams.”
· the fusion chamber, which may use neutronically-thick liquids; see “Liquid-Wall Chambers.”

Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible. 
Status

· Existing accelerators are comparable to projected HIF drivers in size, cost, total beam energy, focusing, average beam power, repetition rate, reliability, and durability. A peak power of 100–1000 TW shared over ~100 beams is the new requirement; use of ~10x final pulse compression reduces the required current at accelerator exit to ~0.1-1 TW/beam. For reference, CERN’s ISR had a single-beam power (protons) of 1 TW at 30 GeV. Fig. 1 shows a typical driver layout.

· A variety of heavy-ion-driven target designs have been developed and simulated in 2-D.These include 2-sided radiation-driven targets resembling those to be tested on NIF, but without laser entrance holes and with converters that absorb ions and produce x-rays. See Fig. 2.
· Successful experiments, along with simulations, have addressed the most important driver-beam manipulations (Figs. 3, 4); the results support projections of beam intensity on target. With currents ranging from 1 mA to 1 A, these scaled experiments had correct, driver-like dimensionless parameters, e.g., “tune depression” (defocusing due to beam space charge) and perveance (ratio of space charge potential energy to ion beam kinetic energy). The Neutralized Drift Compression Experiment-II (NDCX-II) being built at LBNL (Fig. 5) will reach ~100A on target, important to its mission of rapidly heating foil targets before they expand.
Studies of heavy ion power plants predict a cost of electricity similar to that of other fusion options, with additional benefits of long life and minimal use of exotic first-wall materials. 

Current Research and Development (R&D)

R&D Goals and Challenges

· Extend validation of beam acceleration and focusing at high current, and for multiple beams. Continue source-through-target simulation studies for each step toward a power plant system. 

· Optimize target design to minimize required driver cost and beam focusing requirements.
· Work with industry to further develop and reduce the cost of custom accelerator components. 
· Contribute to and learn from fusion, plasma, and accelerator science and technology. 
Related R&D Activities

· The DOE/SC/FES program on ion-heated HEDLP / Warm Dense Matter physics. 

· The research programs in heavy ion fusion and related areas, in Europe, Russia, and Japan. 

· The large worldwide research programs in accelerators for a broad range of applications. 
· The ICF program in targets; the MFE program (esp. work on plasma simulation and magnets). 
· The high-perveance beam physics experiments at U. MD (UMER) and Princeton (PTSX).
· The pulsed power fusion program, particularly for chamber protection and power handling. 
Recent Successes

· Experimental demonstration of: focusing to mm-scale spots; beam merging for a compact injector and as a driver manipulation; and target injection with accuracy for indirect drive.

· Design and near-completion of NDCX-II, a new short-pulse ion beam facility, motivated initially for HEDLP / Warm Dense Matter, but well suited for HIF studies. NDCX-II is a prerequisite for a future facility on the DOE/SC list, the Integrated Beam–HEDP experiment.
· Solid progress toward validated simulations, including a 3D PIC code for HIF beam dynamics.
Metrics
Anticipated Contributions

· A design for an efficient, reliable, durable, low-cost, and environmentally attractive driver and focusing system having adequate repetition rate.

· A target design optimized for yield, cost, and driver requirements, manufacturable in quantity.

· A well-defined, affordable development path involving acceptable levels of risk at each step.

Near Term (first ~5 years)

· Complete and operate NDCX-II to validate predictions of hardware and ion beam performance. 
· Extend NDCX-II; add a non-neutral drift line, bend, and quadrupole final focus, and use to study ion beam compression, bending, and focusing with driver-like dimensionless parameters
· Upgrade HCX for ~5 Hz operation, and extend to answer long path length questions; validate predicted dynamics of its driver-scale beam to enable design of next-step machine. 
· Improve key technologies: quadrupole arrays, pulsers, insulators, ferromagnetic-core materials. 
· Develop designs for several target options; monitor developments in laser-driven targets.

· Partner in a systematic program of scaled experiments on liquid-wall chambers.
· Extend studies of integrated driver/target/balance-of-plant. 
Midterm (next ~10 years)

· Develop, construct and operate ~10-100 kJ Heavy-Ion-Driven Implosion Experiment (HIDIX).

· Use HIDIX for definitive experiments in beam acceleration and control, focusing, chamber physics, and those aspects of ion target physics that cannot be done on existing laser facilities.
· Continue development of key technologies listed above, for next phase. 
· Conduct liquid chamber, target fabrication, and injection R&D for 5 Hz experiments on HIDIX. 
· Develop engineering design for a full-scale driver. 

Long Term (next ~20 years)

· Build 2-3 MJ HIF ignition test facility for single shots, then burst mode, using 5-Hz driver. 
· Complete full-scale chamber experiments. 

· Add nuclear systems; upgrade to 150 MW average-fusion-power HIF DEMO (same driver).

Principal steps to a DEMO plant
(NDCX-II & upgraded HCX) → HIDIX → HIF ignition facility → upgrade to DEMO.

Proponents’ Claims

· The demonstrated technology and known costs of accelerators carry over directly to HIF IFE.
· Past experiments and simulations give confidence in attaining focused-beam intensities.
· Heavy-ion drivers are efficient enough to allow either indirect or direct drive target IFE targets. 
· Heavy-ion energy coupling into targets is effective and does not entail collective scattering.
· Focusing magnets can be long-lived when adequately shielded from line-of-sight target output. 

· Ion beam transport in the chamber is compatible with the vapor pressure of the internal liquid. 
· Thick liquid protection shields the first wall and reduces the required magnet coil shielding.
· The ignition test facility driver can be re-used for a DEMO plant, reducing cost, risk, and time. 

Critics’ Claims

· Risk or delay in the program may be engendered by the modest scale of most HIF experiments.
· A heavy ion driver will be expensive, and/or the development steps costly. 

· Beam focusing / quality requirements will impose additional costs or require too many beams. 
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Fig. 1.  Schematic representation of a typical HIF driver, final optics, and fusion chamber. 
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Fig. 2. Indirect-drive HIF targets: (a) “Hybrid” with Pb+ beam at 3–4.5  GeV, beam spot 3.8 x 5.4 mm, 6.7 MJ input, gain 58; and (b) “Distributed Radiator” with Pb+ beam at 3.3-4  GeV, beam spot 1.8 x 4.1 mm, 5.9 MJ input, gain 68 [D. Callahan et al., Laser and Particle Beams (2002)].
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Fig. 3. (a) Single-Beam Transport Experiment (SBTE), (b) Multiple-Beam Experiment-4 (MBE-4),
(c) High-Current Experiment (HCX), all at LBNL; (d) 500-kV injector test stand at LLNL.
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Fig. 4. (a) Neutralized Transport Experiment (NTX), and (b) Neutralized Drift Compression Experiment-I (NDCX-I), both at LBNL.
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Fig. 5. NDCX-II: (a) initial configuration, (b) 3D PIC simulation of beam dynamics, (c) test stand, and (d) first support-rail segment, an induction cell, and equipment racks as of February 9, 2011.
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