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Methods to neutralize intense ion beam

(a) emitters, (b) plasma plug, and (c) plasma everywhere
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Neutralization by emitting filaments positioned

near the beam sides is no good!
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Color plots of (a) ion beam density, (b) electron
__________________________________________ density, and (c) 1D slice plot.
K+ 320keV; 44ns pulse. The beam radial profile is a
g Qaussian with ry=1cm; and the

maximum beam current density is 0.19A/cm?.
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Neutralization by emitting fllaments immersed
In the beam maybe good!
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Color plots and one-dimensional plots of ion beam density at 30, 200,
and 300 ns. Beam is neutralized with emission from a grid introduced
Into the beam path at z=5 cm.
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Plasma plug cannot provide sufficient neutralization
compared with plasma filling entire volume.
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Beam images at the focal plane non-neutralized (a), neutralized plasma plug

(b), and volumetric plasma everywhere (c).
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Radial force in plasma is always focusing with or
without solenoidal magnetic field

F, =e(E, -V,B,/c) R o
O o
: ) ion beam e
Provided the beam current is ‘ 2
neutralized, i.e., Z,n,v, = n_v,, B, '
Radial focusing force
F =-mV,
np ar Beam density profile

Force Is determined by the Kinetic

: F/Ze 20
energy of an ele(?tron moving Viem) . Analyiic
with beam velocity! -\_ LSP (PIC)
-60
Having n,<<n, strongly increases Bou=0 Beu=300G
: . Magnetic self-pinching  Collective self-focusing
the neutralization degree. M. Dorf, et al., PRL 103, 075003 (2009).
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Degree of neutralization in NDCX-Il beam

plasima ~ Beam potential 10s kV ¢, = me’n, 1"

e
'\@ 2 1 ﬁnb
— F =-mV,
B n, or

Neutralized beam potential 300V, ¢, = mV;

Degree of non-neutralization is <300V/30kV=1% .

Having ny<<n, strongly increases the neutralization degree.

Relative focusing strengths of self-force for n,=n,:
M. Dorf, et al., PRL 103, 075003

NDCX-l: F, Ly / Foy Ly ~ 0.04 (2000).

sol =sol

NDCX-II: F, Ly / Foy Ly ~ 0.5

sol =sol
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The longitudinal compression Is o Ao, | —=

limited by voltage errors o sl = o
Experimental voltage waveform of  Calculated compressed pulse

the NDCX-I induction bunching waveform at the target as a
module. function of drift time.

S.M. Lidia, et al, PAC 2009. t 0
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Effects of incomplete neutralization on
longitudinal compression in NDCX-Il beam

pesmaz ¢, Neutralized beam potential 300V,¢, = mV;:

oy eFE = —-mV’ L|on,
z b
—5— o n 0z
0 . ] ]
Unneutralized self-electric filed decelerates
head and accelerates tail of the beam.
[ n
Change in the ion beam energy ~ ¢, =mV; l" nb |, is initial pulse length
p D

Longitudinal compression is determined by the voltage errors in
the bunching module and compressed 2ns part requires voltage
errors for part of the beam pulse ~100V.

[ n 1OOV 1

Therefore, the plasma density requirementis - b
L n 3OOV 3
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PIC simulations show collective focusing lens can be used
for NDCX-Il beam final focus instead of solenoidal lens.

Solenoidal magnetic field plasma M. DOI’f, et a|’ PoP 2010
0000000O0D 1| n=10'cm?3
T,=3eV FFS (700 G)

4 cm

ZCcm

=
|
-5 0 1 2 30

Beam injection parameters K* @ 320keV,
n,=10%m3, r,=1 cm, beam pulse=40ns (5 cm)
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From R. Kraft, Phys. Fluids 30, 245 (1987)
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Beam density t=250 ns
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Study of possible beam emittance growth during
transition into a plasma

 Complex nonlinear electromagnetic fields are generated when intense
fast beam enters a plasma. yw,/c
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LSP simulation. Shown normalized

1 1 o
electron current. n, ==n_ _ 1
b 2 P b 2C

Negatively biased ring and magnetic dipole mitigate electron
penetration into accelerator and reduce beam emittance growth.




Study of mechanisms of plasma formatlonln
ferroelectric plasma source 28 e

Initial Front electrodes

plasma Photograph Of p|aSma

/\ top view (a)

side view (b)

supply

Rear electrode

Plasma is produced from desorbed or sputtered gas and electrons emitted from surface
in a very thin layer near the surface. Plasma density is increased for short nanosecond
pulses or by applying a crowbar method.

Need a model explaining why this method yields an increase in plasma density?
Need a model for plasma expansion velocity into vacuum.

Preliminary simulations with WARP, LSP and fluid code show complex
nonlinear phenomena of plasma formation dependent strongly on gas
desorption and electron emission. Feroects, o 1 - e 2008300 00

Electron density; time 24 ns
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Study of plasma filling the pipe in complex time-dependent
magnetic field

1. Plasma filling depends on how much plasma is generated
near the surface and its velocity propagation into vacuum.

2. Plasma mostly flows along the magnetic field lines created
by the CAPS filter coils, the 8 T solenoid, and the eddy
currents. The tendency to follow magnetic field lines, plus

the effect of magnetic mirroring limits the amount of plasma
at the solenoid midplane.

9 cm long solenoid /
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lon saturation current measured
on a hexagonal array of copper
collector disks. Prabir, et al.
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3D instabilities, Umansky et al, resistive drift Wa\V',
rotational Interchange, Kelvin-Helmholtz



Conclusions for simultaneous longitudinal and
transverse neutralized compression

Analytical theory and simulation show that plasma can provide
the necessary neutralization for compression, provided the
plasma density exceeds the beam density everywhere along
the beam path, I.e., n,>n,,

Further studies are needed:
e beam emittance growth during transition into a plasma.
e mechanisms of plasma creation in ferroelectric source.

» plasma filling the pipe in complex time-dependent magnetic
field.
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Beam filamentation (Weibel) instability should be
investigated with rotating helical beams during NDC

g-deflectors
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The “Robertson lens” is an example of a multi-species
system that we need to simulate in full kinetic detall

« An ambipolar electrostatic field brings both species to a common focus
« For a given focal length, the required B, is smaller by a factor of (m_/m.)*

solenoidal coll
ela\EZQDDl'_][l[flIIJEI
r

O
- S — & -
neutralized ion beam © Ja— =
e, T > Er \ o~
focal point
: = (from
Kraft
- paper)
ﬁ 0 0O0OO0OO0OGOTG OGO
. T
Focusing force on beam: Fj = —Zmiﬂﬂﬂi (4 = ZyeBy /myc)

References: S. Robertson, Phys. Rev. Lett. 48, 149 (1982). o
R. Kraft, B. Kusse, & J. Moschella, Phys. Fluids 30, 245 (1987). 00>
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Collective focusing schemes

Solenoidal magnetic field

E
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S. Robertson, PRL, 48, 149 (1982).
Thin collective lens

From R. Kraft, Phys. Fluids 30, 245 (1987)
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E,~360 keV, r,~2 cm, n,~1.510'1cm-3

SOLENQIDAL COIL

goooooOoooo00o0aa0

= P i Wl P |"’/'I.I
&}_.
collector | = | |
ra Far Al A i = LT -1

gopgoooogoopooooon

=

I DIODE
208 pF
. Experimental apparatus.
' T
)| Normalized Current Dans:l ity

080 kilogauss
100 —
Qs | —
050 — —
025 1~ 0 kilogauss ]

o Eiit, _~om

50 -25 0 25 50
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The beam can excite whistler waves

(b) em
(a) Vy

w/ck; V=V, A=Wee/2BbWp Whistler
» ,
Ver=0

_________________________ No waves / B
__________________________ =1 /
Pe wr/ck; &
: Waves are
______ L Fgexcited (a>1) Beam frame
KeyT WpdlC Kas K &

Long wavelength Short wavelength
(electromagnetic)  (quasi-electrostatic) Vy®
V=V VSZ{'Vb Quasi -
electrostatic wave

(a) The phase velocity of the whistler wave is plotted as a function of
wave vector (solid curve) and is intersected by different values of
the normalized beam velocity (dashed lines).

(b) Schematic illustration of the whistler waves excited by the ion beam
pulse. M. Dorf et al., Phys. Plasmas 17, 023103 (2010).

Slide 20 Heavy lon Fusion Science ’a\l : “L- SPPPL
Virtual National Laboratory N




Movies

Courtesy of A. Sefkow
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