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Outline

• Overview of established facts about neutralization

• Overview of needed to be established facts about 
neutralization
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Methods to neutralize intense ion beam
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I. D. Kaganovich et al, Physics of neutralization of intense high-energy ion beam pulses 
by electrons, Phys. Plasmas 17, 056703 (2010).

Te~1/r2
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Neutralization by emitting filaments positioned 
near the beam sides is no good!

Color plots of (a) ion beam density, (b) electron 
density, and (c) 1D slice plot. 
K+ 320keV; 44ns pulse. The beam radial profile is a 
gaussian with rb =1cm; and the
maximum beam current density is 0.19A/cm2.
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Neutralization by emitting filaments immersed 
in the beam maybe good!

Color plots and one-dimensional plots of ion beam density at 30, 200, 
and 300 ns. Beam is neutralized with emission from a grid introduced 
into the beam path at z=5 cm.
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Plasma plug cannot provide sufficient neutralization 
compared with plasma filling entire volume.

Beam images at the focal plane non-neutralized (a), neutralized plasma plug 
(b), and volumetric plasma everywhere (c). 

P.K. Roy et 
al, NIMPR. 
A 544, 225 
(2005).
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M. Dorf, et al., PRL 103, 075003 (2009).

Provided the beam current is 
neutralized, i.e., Zbnbvb = nevez

Radial force in plasma is always focusing with or 
without solenoidal magnetic field

Force is determined by the kinetic 
energy of an electron moving 
with beam velocity!

Having nb<<np strongly increases 
the neutralization degree.
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Degree of neutralization in NDCX-II beam

Degree of non-neutralization is <300V/30kV=1% .

Having nb<<np strongly increases the neutralization degree.
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Neutralized beam potential 300V, 2
p b
mVφ =

Relative focusing strengths of self-force for nb=np:
NDCX-I:   Fr Ldrift / Fsol Lsol ~  0.04
NDCX-II:  Fr Ldrift / Fsol Lsol ~  0.5  

M. Dorf, et al., PRL 103, 075003 
(2009).
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The longitudinal compression is 
limited by voltage errors
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Experimental voltage waveform of 
the NDCX-I induction bunching 
module. 
S.M. Lidia, et al, PAC 2009.

Calculated compressed pulse 
waveform at the target as a 
function of drift time.
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Effects of incomplete neutralization on 
longitudinal compression in NDCX-II beam

Unneutralized self-electric filed decelerates 
head and accelerates tail of the beam.

Neutralized beam potential 300V, 2
p b
mVφ =
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Change in the ion beam energy ~ 2 dr b
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Longitudinal compression is determined by the voltage errors in 
the bunching module and compressed 2ns part requires voltage 
errors for part of the beam pulse ~100V.
Therefore, the plasma density requirement is   100 1

300 3
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, lp is initial pulse length



Slide 11 Heavy Ion Fusion Science
Virtual National Laboratory

No electrons

PIC simulations show collective focusing lens can be used 
for NDCX-II beam final focus instead of solenoidal lens.

Beam injection parameters K+ @ 320keV, 
nb=1010cm3, rb=1 cm, beam pulse=40ns (5 cm)
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From R. Kraft, Phys. Fluids 30, 245 (1987)
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Solenoidal magnetic field
E

Scheme requires intense beam

and no plasma or electrons 
streaming from target (magnetic 
dipole) 

ωpe(ne=nb)>ωce

M. Dorf, et al, PoP 2010
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Outline

• Overview of established facts about neutralization

• Overview of needed to be established facts about 
neutralization



Slide 13 Heavy Ion Fusion Science
Virtual National Laboratory

Study of possible beam emittance growth during 
transition into a plasma
• Complex nonlinear electromagnetic fields are generated when intense 

fast beam enters a plasma. 

-1

1
LSP simulation. Shown normalized  

electron current.
  1

2b p
n n= 1

2b
V c=

Negatively biased ring and magnetic dipole mitigate electron 
penetration into accelerator and reduce beam emittance growth. 



Slide 14 Heavy Ion Fusion Science
Virtual National Laboratory

Study of mechanisms of plasma formation in 
ferroelectric plasma source

Plasma is produced from desorbed or sputtered gas and electrons emitted from surface 
in a very thin layer near the surface. Plasma density is increased for short nanosecond 
pulses or by applying a crowbar method.

Need a model explaining why this method yields an  increase in plasma density? 
Need a model for plasma expansion velocity into vacuum.   

Photograph of plasma
top view (a)
side view (b)

Ya. E. Krasik

Preliminary simulations with WARP, LSP and fluid code show complex 
nonlinear phenomena of plasma formation dependent strongly on gas 
desorption and electron emission.
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Study of plasma filling the pipe in complex time-dependent 
magnetic field 

1. Plasma filling depends on how much plasma is generated 
near the surface and its velocity propagation into vacuum. 

t = 2.0μst = 1.0μs

Ion saturation current measured 
on a hexagonal array of copper 
collector disks. Prabir, et al.

2. Plasma mostly flows along the magnetic field lines created 
by the CAPS filter coils, the 8 T solenoid, and the eddy 
currents.  The tendency to follow magnetic field lines, plus 
the effect of magnetic mirroring limits the amount of plasma 
at the solenoid midplane.

3D instabilities, Umansky et al, resistive drift wave, 
rotational Interchange, Kelvin-Helmholtz
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Conclusions for simultaneous longitudinal and 
transverse neutralized compression
Analytical theory and simulation show that plasma can provide 
the necessary neutralization for compression, provided the 
plasma density exceeds the beam density everywhere along 
the beam path, i.e., np>nb. 

Further studies are needed:

• beam emittance growth during transition into a plasma.

• mechanisms of plasma creation in ferroelectric source.

• plasma filling the pipe in complex time-dependent magnetic 
field.
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Beam filamentation (Weibel) instability should be 
investigated with rotating helical beams during NDC
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The “Robertson lens” is an example of a multi-species 
system that we need to simulate in full kinetic detail

• An ambipolar electrostatic field brings both species to a common focus
• For a given focal length, the required B0 is smaller by a factor of (me/mi)1/2

References: S. Robertson, Phys. Rev. Lett. 48, 149 (1982).
R. Kraft, B. Kusse, & J. Moschella, Phys. Fluids 30, 245 (1987). requires:

rb<< c/ωpe
ωpe>> ωce

Focusing force on beam:

Ez

solenoidal coil                  

(from  
Kraft 
paper)

focal point
Er
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Collective focusing schemes

From R. Kraft, Phys. Fluids 30, 245 (1987)

+
-
+

Solenoidal magnetic field

E

Eb~360 keV, rb~2 cm, nb~1.5∙1011cm-3

S. Robertson, PRL, 48, 149 (1982).  
Thin collective lens
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The beam can excite whistler waves

(a) The phase velocity of the whistler wave is plotted as a function of 
wave vector (solid curve) and is intersected by different values of 
the normalized beam velocity (dashed lines). 

(b) Schematic illustration of the whistler waves excited by the ion beam 
pulse. M. Dorf et al., Phys. Plasmas 17, 023103 (2010).
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Movies

Courtesy of A. Sefkow


