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S1: Overview: Machine Operating Points

Good transport of a single component beam with intense space-charge
described by a Vlasov-Poisson type model requires:
1. Lowest Order:

Stable single-particle centroid: oy < 180° see: Transverse Particle Dynamics
Transverse Centroid and Env.
2. Next Order:

Stable rms envelope:

3. Higher Order:
“Stable” Vlasov description: To be covered these lectures

g0, 0'/0'0 both outside  see: Transverse Centroid and

of envelope bands Envelope Descriptions

Transport of a relatively smooth initial beam distribution can fail or
become “unstable” within the Vlasov model for several reasons:

+ Collective modes internal to beam become unstable and grow
- Large amplitudes can lead to statistical (rms) beam emittance growth

+ Excessive halo generated
- Increased statistical beam emittance and particle losses

+ Combined processes above
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Transport limits in periodic (FODO) quadrupole lattices that result from
higher order processes have been measured in the SBTE experiment.
These results had only limited theoretical understanding over 20+ years

Limits defined with respect to reasonable (smooth) initial distributions

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)] _ [-0W Space-Charge

Intensity
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Summary of beam stability with intense space-charge in a
quadrupole transport lattice: centroid, envelope, and theory
boundary based on higher order emittance growth/particle losses

Min Lo e Theory stability
° 0.8 boundary points
2 g
2o swi + Lund and Chawla, NIMA 561
g g t 04 Envelope 203 (2006)
5 Tostabile + Lund, Barnard, Bukh, Chawla,
N 0.2 ¥
and Chilton, NIMA 277

0.0 173 (2007

Max = 30 60 9 120 150 180 (2007)
T oo (degrees/period) T
Min Focusing Strength Max

Recent theory analyzes AG transport limits without equilibria

* Suggests near core, chaotic halo resonances driven by matched beam envelope flutter
can drive strong emittance growth and particle losses
+ Results checked with fully self-consistent simulations
Analogous mechanisms (with much smaller region of parameters leading to “instability”)
exist for solenoidal transport
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S2: Overview:
Collective Modes and Transverse Kinetic Stability

In discussion of transverse beam physics we have covered to date:

Equilibrium
+ Used to estimate balance of space-charge and focusing forces
- KV model for periodic focusing
- Continuous focusing equilibria for qualitative guide on space-charge effects
such as Debye screening and nonlinear equilibrium self-field effects

Centroid/Envelope Modes and Stability
+ Lowest order collective oscillations of the beam
- Analyzed assuming fixed internal form of the distribution
+ Model only exactly correct for KV equilibrium distribution
- Should hold in a leading-order sense for a wide variety of real beams
+ Predictions of instability regions are well verified by experiment
- Significantly restricts allowed system parameters for periodic focusing lattices
# Envelope and Centroid instability can be avoided using focusing sufficiently weak to
avoid envelope instability by taking o9 < 90°
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Example — Envelope Modes on a Round, Continuously Focused Beam

y Breathing Mode (+)

Quadrupole Mode (-) /E"VC]OPC
Envelope ’

/
Matched Beam —
Envelope "'m er

Quadrupole and
Breathing Modes

The analog of these modes in a periodic focusing lattice can be destabilized

* Constrains system parameters to avoid band (parametric) regions of instability
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Reminder (lecture on Centroid and Envelope Descriptions of Beams):
Instability bands of the KV envelope equation are well understood in
periodic focusing channels

Envelope Mode Instability Growth Rates
Solenoid (17_=0.25) Quadrupole FODO ( 7 _=0.70)

1.0 ! 1.0
} ln\vi ‘ 0.5
0.8 1 0.8
0.0
0.6 0.6
e g
© 04 * © o4
Lattice
02| Res. | 02
Band !
0.0 ! ‘ 0.0
100 120 140 160 180 100 120 140 160 180

O (deg/period) G (deg/period)
[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]
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More instabilities are possible than can be described by centroid and envelope
models. Look at a more complete, Vlasov based kinetic theory including self-
consistent space-charge:

Higher-order Collective (internal) Mode Stability
+ Perturbations will generally drive nonlinear space-charge forces
+ Evolution of such perturbations can change the beam rms emittance
+ Many possible internal modes of oscillation should be possible relative to
moment (envelope) oscillations
- Frequencies can differ significantly from envelope modes
- Creates more possibilities for resonant exchanges with a periodic focusing
lattice and various beam characteristic responses opening many
possibilities for system destabilization

KV Envelope Mode Higher Order Mode
(breathing)
n(r) A n(r)
A = const A = const
N N\
: > : >
Tb b0 r Tb  Tho T
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Plasma physics approach to beam physics:

Resolve:

f(x1,x,8) = fL{Ci}) +0f1(x1,%),8)

equilibrium / perturbation”  f > |df|

and carry out equilibrium + stability analysis

Comments:
+ Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
+ Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for
periodic focusing lattices other than the KV distribution
- Not clear if smooth equilibria exist for finite radius beams
+ Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations relative to plasma physics
- Influence of beam edge (finite plasma) and intense (generally nonlinear)
self-fields complicate picture relative to neutral plasma physics
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Review: Transverse Vlasov-Poisson Model: for a coasting, single species beam
with electrostatic self-fields propagating in a linear focusing lattice:

’

X1, X transverse particle coordinate, angle
’

g, M charge, mass Ji (XLa X, 3) single particle distribution

Yo, Bb  axial relativistic factors Hy(xy, X/Lv s) single particle Hamiltonian

Vlasov Equation (see Barnard, Introductory Lectures; Lund, Transverse Eq. Dists.):

d ofL dx. Of. dx| 0fL
Efj': 0s * ds .aXJ_ ds '8X’J_7
Particle Equations of Motion:
d (9Hl d ’ aHL
P T T,
Hamiltonian (see: S.M. Lund, lectures on Transverse Equilibrium Distributions):
H, = %Xﬁ_2 + %ﬁgg(s)af + %Ry(s)gf + W(]ﬁ

Poisson Equation:

0? 0? q 2/
(7 ) o= i

+ boundary conditions on ¢
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Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

@b | (==K, =const) Lattice Period Ly,
Ko
- Occupancy 7
b) Periodic Solenoid n € [0,1]
Kal() (ke =1%) 2
Solenoid description
carried out implicitly in
jt Larmor frame
a2 ni, an . an [see: S.M. Lund, lectures on
o d=(1-mL, Transverse Particle Dynamics]
p | ©) Periodic Quadrupole Doublet
1,(5) (K, =1 A )
K Syncopation Factor «
d L2,
F Quad o 1
D Quad s o € [O, 5}
NLy/2
,{Qq _ 1
L, dy=o(l-nJL, o = 5 — FODO
Lattice Period dy=(1-a)(1-n)L,
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. . . _ _ 1.2
Continuous Focusing: ki, = ky = kjo = const

H = %x’f + %kfmxi + Waﬁ

Solenoidal Focusing (in Larmor frame variables): Kz = Ky = K(s)
H, = %xjﬁ + %mxf_ + 3ﬁ202¢)

Quadrupole Focusing: Ky = —ky = /@q(s)

We will concentrate (mostly) on the continuous focusing model in these

lectures and will summarize some recent results on periodic focusing
+ Kinetic theory is notoriously complicated even in this (simple) case
+ By analogy with envelope mode results expect that kinetic theory of
periodic focusing systems to have more instabilities
+ As in equilibrium analysis the continuous model can give simplified insight
on a range of relevant kinetic stability considerations
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S3: Linearized Vlasov Equation

Because of the complexity of kinetic theory, we will limit discussion to a simple
continuous focusing model Vlasov-Poisson system for a coasting beam within a
round pipe

i _ [0 A P q 09 0 , -
ds {85 + x| ox. (k‘ﬁoXJ_ + 73@?02 oL —BX’J_ fr(xi,x,8)=0
Vi é(x1,s) =——/d2x fr(xi,x1,s)

o(Jx1| =1p,s) = const

Then expand the distribution and field as:

fL = fo(Ho) + 0fL
¢ = ¢o + 00

equilibrium  perturbation

Comment:

The Poisson equation connects

f1 and ¢ so, df, and 0
cannot be independently specified.
We quantify the connection shortly.

At present, there is no assumption that the perturbations are small
+ Use subscript zeros to distinguish equilibrium quantities in the absence of
perturbations to setup perturbation analysis
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The equilibrium satisfies:
(see: S.M. Lund, lectures on Transverse Equilibrium Distributions)

1 1
HO = §X/L2 + Ekgoxi =+

q
332 2¢0
my;, By c

fo(Hp) > 0 (any non-negative function)
10 0
( ﬂ) :——/d%: fo(Ho)
ror
The unperturbed distribution must then satisfy the equilibrium Vlasov equation:
9 0 9 (2 _ 4 9% 9 _
{as T ox| <k50XJ' * m’yé”ﬁ?cQ ox| ox/| fo(Ho) =0

0 q [2}0) 0
{Xl oy <"3§OXL+ Waxi) I }fo(Ho) =0

Because the Poisson equation is linear, and ¢o satisfies the equilibrium Poisson
equation:

V2 6(xL, 5) ———/d? SFL(xL,x1,58)

d0é(|xL| =7p,s) = const
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Insert the perturbations in Vlasov's equation and expand terms:

0
% o, 9
‘{35 3 /;TJ. - (kgoxL " bqﬁbCQ 3i)j> 9% }fO(HO) equilibrium term

4 ’ 0 2 q 8¢0 %
* {83 tXL ox (kﬁOxL * myp BEc? ox, 8){’l 8f1

g 9% 0 qg 08¢ 0
T mpRR ox, 0x, mARB22 Ox,  Ox,
perturbed field nonlinear term
linear correction term
Take the perturbations to be small-amplitude:

fo(Ho) > [0 f1]
do > 0o <--- follows automatically from distribution/Poisson Eqn

equilibrium characteristics
of perturbed distribution

and neglect the nonlinear terms to obtain the linearized Vlasov-Poisson system:

9 0. 9 (2 _ 4 b\ 9 /
{88 txL Ox | (kﬁoxL + m’ygﬁgc2 Ox | ox/| 0f1(x1, %, 9)
q dp(x1,s) O
- L h(H,
mypRE ox.  0x, fo(Ho)

V2 60(x.. 5) :——/d2 SFL(xL,x1,5)

0é(|x1| =7p,s) = const
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Solution of the Linearized Vlasov Equation: Use the method of
characteristics to recast in a more manageable form for beam applications

The linearized Vlasov equation is a integral-partial differential equation system
+ Highly nontrivial to solve!
+ The structure of the equations suggests that the Method of Characteristics can
be employed to simplify analysis

Note that the equilibrium Vlasov equation is:
0 0 q  Odo 9
= S 1 7). -
{63 XL ox ( Bo¥XL+ mypB2c? 8xl> 8xﬁ_}f0 0
d
" fo=0
Interpret:

ds eq. orbit
RV 4 o) 0 \_d
0s L ox, mypBEc? Ox ox'| "~ ds
as a total derivative evaluated along an equilibrium particle orbit in the

continuum approximation beam equilibrium. This suggests employing the
method of characteristics.

(k%oXJ_ +

eq. orbit
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Method of Characteristics:

Orbit equations of motion of a “characteristic particle” in equilibrium:

ds
d Y. g 9¢o(x.(3))
%XJ_( ) - _kﬁoxl(s) - m,ygﬁgcg 85@(5)

“Initial” conditions of characteristic orbit chosen such that particle passes through
phase-space coordinates X1, X/, at §=s

x1(8=8)=x,

%\ (3=s5)=x

Then the linearized Vlasov equation can be equivalently expressed as:

q  95p(x.L(3))
mypB2c? 9% (3)

T EL(3),%L(3),5) =

6” fo(Ho(%1(3), % (3)))

Integrate:
/_ 45 Lof1(3,(5), %, (3),5) =
Loy a5 0 (. (9.2, 3)

myp B2 c? 0% (3)
Transverse Kinetic Stability 22
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Neglect initial conditions at § — —oo to analyze perturbations that grow in s:
[ @5 FAGOR.0) = 6 = Jim 614 (9).%0().5)
~§f(x1,%,s)
Giving:

¢ [ a2,

5
my,Bpe %1 (3)

Insert this expression in the perturbed Poisson equation:

0f1(xL,x),8)=

8” o Jo(Ho(%1(3), %/ (3)))

V2o(x,5) = L / P/, 5f1(x1,x1,5)

d¢(|x1| =rp,s) = const

To obtain the characteristic form of the perturbed Vlasov equation:

Summary:
Linearized Vlasov-Poisson system expressed in the method of characteristics

_ [T LG D
VE0(x109) = 5 /dz / B e Gy B 1 (3, %.9)

d¢(|x1| =rp,s) = const

With characteristic orbits in the equilibrium beam satisfying:

Eqns of Motion: %il(S) =%
2%, (5) = kg1 (5) -~ 200 )
ds mypBic: 0%y (3)
Initial x1(8=35)=x1
Conditions: X (3=s5)=x

2 2. L 00(x.(3))
Vidp(xi,s) = meo’ybﬂbc2 /d / ds 9%, ( )

do(|x1| = rp,s) = const

(Ho(%1(5),%1(5)))
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Gives the self-consistent evolution of the perturbations
+ Similar statement for nonlinear perturbations (Homework problem)

Effectively restates the Poisson equation as a differential-integral equation that is
solved to understand the evolution of perturbations
* Simpler to work with .... but still very complicated to solve in general cases due to
nonlinear equilibrium characteristics which other than special cases are difficult to

solve for analytically
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S4: Collective Modes on a KV Equilibrium Beam

Unfortunately, calculation of normal modes is generally complicated even in
continuous focusing. Nevertheless, the normal modes of the KV distribution can
be analytically calculated and give insight on the expected collective response of a
beam with intense space-charge.

Review: Continuous Focusing KV Equilibrium
+see: S.M. Lund, lectures on Transverse Equilibrium Distributions

Undepressed
It n slm g? kgo = betatron wavenumber
fLHL) = o L 27-% r, = Beam edge radius
n = Beam number density

Express equilibrium parameters in normalized forms Q=
as before to provide a “guide” to other systems:

1/2
Q + \/4kFee? + Q2

Dimensionless perveance

e = rms edge emittance

Ty = o2 = const o Jo2 L B ﬁ
30 - 0 L.)2 - 2
(ro/Lp)* 1y

2
ko = <00> = const kjoe® _ age (0/00)?
BO - —— —_ = =
Ly Q>  QL; [1—(0/o0)’]?
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution for non-continuous focusing channels:

f1 ~ é[Courant-Snyder invariants]

Forms a highly singular hyper-shell in 4D phase-space
/

o X1
Schematic: - 4D singular hyper-shell surface

X1

+ Singular distribution has large ‘“Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important
(see: S.M. Lund, lectures on Centroid and Envelope Descriptions of Beams)
+ Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied
with care (see following lecture material)
- Instabilities can cause problems if the KV distribution is employed
as an initial beam state in self-consistent simulations
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A full kinetic stability analysis of the elliptical beam KV equilibrium

distribution is complicated and uncovers many strong instabilities

[ I. Hofmann, J.L. Laslett, L. Smith, and I. Haber, Particle Accel. 13, 145 (1983);
R. Gluckstern, Proc. 1970 Proton Linac Conf., Batavia 811 (1971) ]

Expand Vlasov's equation to linear order with:

| fi — fL(C.S. Invariant) + &f1 |

Solve the Poisson equation:
V2op= L /d%:' 5fL
€0
using truncated polynomials for d¢ internal to the beam to represent a

“normal mode” with pure harmonic variation, i.e., J¢ ~ func(z,y)e "**

n n—2
8¢ = e~ { Z AW (s)znmy™ 4 Z AW (g)znm=2ym 4. }
m=0 m=0
k = const = Mode Wavenumber n =2,3,4,--- “order” of mode
1=v-1
+ Truncated polynomials can meet all boundary conditions (Glukstern, Hoffmann)
+ Eigenvalues of a Floquet form transfer matrix analyzed for stability properties
- Lowest order results reproduce KV envelope instabilities

- Higher order results manifest many strong instabilities
SM Lund, USPAS, June 2011

f1(C.S. Invariant) = equilibrium

0 f1 = perturbation

m can be restricted to even or odd terms
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Higher order kinetic instabilities of the KV equilibrium are strong and
cover a wide parameter range for periodic focusing lattices

Example: FODO Quadrupole Stability

4™ order (n = 4) even mode

[Hofmann et. al, Particle Accel. 13, 145 (1983)]
T e LRy
r <+ Comment:

F o =120° o . Hofmann et al
Q Instabilities 7 notation on

space-charge

parameter:

14, dQ
| @# 4

N # Our Q

Q' scale not
defined in paper

5010

ofog — 1 o/og— 0

(space-charge parameter)
(undepressed) --> increasing space-charge -->

(fully depressed)
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The continuous focusing limit can be analyzed to better understand

properties of internal modes on a KV beam
[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998): see Appendix B, C]

Continuous focusing, KV equilibrium beam: —e =
Eg =Ey =€

2
5a(s) = 1y (5) = KB = const ey =y
Search for axisymmetric (9/90 = 0) normal mode solutions with ~ e~"**
variations with:

k = const = Mode Wavenumber
8¢ = 6py(r)et™s

Find after some analysis:
+ See Appendix A, derived using method of characteristics and solving a radial

(generally complex)

0¢n(r) = Truncated Polynomial in r

eigenvalue equation

Mode Eigenfunction (2n “order” in the sense of Hoffman et. al.):

2 2
&bn_{%[Pn1(1—2:?)+Pn(1—2:—5)], 0<r<mn
0, A,, = const Ty < T
n=1, 2 3, P _ th .
»(x) = n" order Legendre polynomial
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Plots of radial eigenfunction help illustrate normal mode structure:

Potential

8,(r)/ 80,(r=0), Potential

8n,(r)/ 8n,(r=0), Density

r/r,, Radius

Density ( 6nn = €0V dén/q )
u‘z DiA D!E DEE 1.0

r/r,, Radius

+ Polynomial eigenfunction has n-1 density profile “wiggles” and tends to vary
more rapidly near beam edge for higher n values

+ Figenfunction structure suggestive of wave perturbations often observed
internal to the beam in simulations for a variety of beam distributions

SM Lund, USPAS, June 2011
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Corresponding dispersion relation has degenerate branches for each eigenfunction

some of which go strongly unstable for n > 2

Dispersion Relation

1-o0/o k/k k/k
on 4 L=/ [B ( / ﬂo> _ 3, (ﬁ)} ~0
(o/00) a/ao o/og
1, =0
a/2)?=0? (a/2)°=2% | (a/2°=(G-1)? ; _
where: Bj(a) = Ea§2)2—12 (a§2)2—32 ! (/a)/Q)z(ijQ) J=135
(@/2)°—1% (a/2)°=3" | (a/2°-(G-1)® ;i _9 46 ...
(a/2)7=27 (a/2)2—42 (a/2)2=32 J =250

+ n distinct branches for nth order (real coefficient) polynomial dispersion
relation in (k/ kﬁ0)2
+ Some range of ¢/0g unstable for all n > 1
- Instability exists for some n for o /oo < 0.3985
- Growth rates are strong

Plot dispersion relation roots in real and imaginary parts to analyze stability
properties of each eigenmode

SM Lund, USPAS, June 2011 Transverse Kinetic Stability
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Continuous focusing limit dispersion relation results for KV beam stability

IRe o /v,l, Oscillation Frequency

1Re ® ol

IIm o /vyl, Growth Rate

IRe ® Vol

IRe 6 ol

IRe & vl

IRe & vyl

viv, Tune Depression
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n=1 - . n=1
— z
3" No Instability
5
n=2 n=2 |
// _ 3. / \
- /// ':E // \
- : i
n=3 — n=3
- VA
/ 1= / \\
S b T
L \
d j //’ . /ﬂ\\ n=4
/ e >
/,// // o 5 // \\
I - \ |
_ _ L -
n=5 // . ~ n=5
: Az
s R IV SN
iy / /4/ " \\ \

v/v, Tune Depression

Notation Change:
k/kgo = w/vo

olog =v/vy

[S. Lund and R. Davidson,
Physics of Plasmas 5, 3028 (1998):
see Appendix B, C]
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Summary stability results for a continuously focused KV beam with
axisymmetric perturbations
Stability results are highly pessimistic and inconsistent with simulation and
experiment which show:
+ Internal collective waves with at times strong similarity to stable branches of
the KV distribution but without the strong instabilities predicted
+ Smooth initial distributions likely to be present in the lab transport well with no
instability or pronounced growth of phase-space area
- Particularly true in ideal continuous focusing systems
- Lesser degree of stability found for periodic focusing systems (see S12).

If we take the KV results literally transport would be precluded by one or more
collective mode being unstable when /oy < 0.3985
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For continuous focusing, fluid theory shows that some branches and
features of the KV kinetic dispersion relation are physical
[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998)]

KV model kinetic instabilities are a paradox:
Low-order features physical:
+ Envelope equations well verified and instabilities of must be avoided in design

Higher-order collective modes:
+ Perturbations seen in simulations/lab similar in form to the normal mode radial
eigenfunctions
# BUT perturbations on real, smooth beam core not typically unstable where the
KV model predicts strong bands of parametric instability

How is this situation resolved? Partial answer suggested by a fluid theory model of the
KV equilibrium that eliminates unphysical aspects of the singular KV equilibrium core

Fluid theory:
+ KV equilibrium distribution is reasonable in fluid theory
- No singularities
- Flat density and parabolic radial temperature profiles
+ Theory truncated by assuming zero heat flow
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Results of normal mode analysis based on a fluid theory:
Mode eigenfunctions:

Exactly the same as derived under kinetic theory!

Potential Density ( 6nn = €0V ddn/q )

s ‘ z ° ‘ ‘
= 10 ‘0
H g
g =]

Q.5 —~
— [=)
7 L
£ s ‘ ‘ ‘ ‘ 5

°
°
i
o
IS
°
Y
°
®
°

r/r,, Radius
Mode dispersion relation:

L 2+2(i)2(2n21)

kgo oo

r/rp, Radius

n=1,2 3, -

+ Agrees well with the stable high frequency branch in kinetic theory

Results show that aspects of higher-order KV internal modes are physical!
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Continuous focusing limit dispersion relation results for KV beam stability

IRe m /vyl, Oscillation Frequency IIm o Iv,l, Growth Rate

— — - Notation Change:
:\E . % " No Instabllity k/kBO = w/]jo
n=1, = =
envelope e an O'/UO = I//I/O
mode = N B
curves 8« N \\
£ £ .
overlap = Red: Fluid Theory
_ . /\ n=3 (no instability)
- 5 / \ Black: Kinetic Theory
g = / \ (unstable branches)
e T n=a
3 AN
3w 3 o \\
€., 5" I
- o zlu 05 o
n=5 e N n=5
2 ~1 = / \
z o E A
8 g BYAN [S. Lund and R. Davidson,
= = \ Physics of Plasmas 5, 3028 (1998)]
\

viv, Tune Depreséion v/v, Tune Depression
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Appendix A: Solution of the Small Amplitude Perturbed Vlasov Equation
for a Continuously Focused Beam

Not yet typeset.

See handwritten note supplements from previous courses on:
http://hifweb.Ibl.gov/USPAS_2011/lec_set_08/tks_sup.pdf
Section 4: USPAS 2008, UC Berkeley 2009
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S5: Global Conservation Constraints
Apply for any initial distribution, equilibrium or not.

+ Strongly constrain nonlinear evolution of the system.

+ Valid even with a beam pipe provided that particles are not lost from the system and

that symmetries are respected.
+ Useful to bound perturbations, but yields no information on evolution timescales.

1) Generalized Entropy

Uag = /dQ.TJ_ /d2 = const

G(fL) = Any diffrentiable functions satisfying G(f, — 0) =0

+ Applies to all Vlasov evolutions.

/I Examples
Line-charge: Gfu)=qft —» |A= q/del /de’J_ f1 = const

Entropy: G(fL) = _% In (]}_ﬁ) fo positive constant

/del /d2 ! f—J' (J;%') = const
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2) Transverse Energy in continuous focusing systems

2 2 2 E0|VJ.<Z’|2
Ug—/da:J_/d { + kﬁOXL}f_]_ +/dle=const

Here,

1
/dQ:z:’l /dgau Ex'ffl ~ Kinetic Energy

/dgxi /d%L lkéoxih ~ Potential Energy
2 of applied focusing forces

2
/ d’z, ;Owlﬁd)' 5 ~ Self-Field Energy (Electrostatic)
my;B2c

+ Does not hold when focusing forces vary in s
- Can still be approximately valid for rms matched beams where energy will
regularly pump into and out of the beam
+ Self field energy term diverges in radially unbounded 2D systems (no aperture)
- Still useful if an appropriate infinite constant is subtracted (to regularize)
- Expression adequate as expressed for system with a round conducting,
perfectly conducting aperture
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Comments on system energy form:

Ue = /dQl'l /dQIL {%xf + %kgoxi} fr + /d21 eg|VLﬁ¢| = const
g

Analyze the energy term: zero for grounded aperture
“ in finite system

2
/d% 6°|V;¢’| /d%u VL (e0dV1o) — /d%l %qﬁeOVﬁ_qﬁ

or infinite constant

Employ the Poisson equation: ™ re¢ space

Vio—-2 [&d
d2 60|VJ~¢| d2 d2
Giving: - / / / L Qq@i

1 qo
2 2
Ug:/dxﬁ_/d;m_ {— + kﬁo J‘+2m73ﬁb02}fl = const

symmetry factor

+ Note the relation to the system Hamiltonian with a symmetry factor to not double

count particle contributions 1
p H, = 2 L + kﬁOXL‘F m73/6202¢
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Comments on self-field energy divergences:

In unbounded (free space) systems, far from the beam the field must look like a
line charge: 96 A\

— ~
or  2meor

T > Tlarge

Resolve the total field energy into a finite (near) term and a divergent term:

2 2 2 0
/dQ:cL @lVigl® _ / &z, €| Vg LA / ol
2 T<Tlarge 2 47{‘60 r

Tlarge

total finite term logarithmically
divergent term

+ This divergence can be subtracted out to thereby regularized the system energy

- Renders energy constraint useful for application to equilibria in radially
unbounded systems such as thermal equilibrium
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3) Angular Momentum

Up = /ancJ_ /d%l (y'x — 2'y)fL = const

+ Can apply to periodic (solenoidal and Einzel lens focusing) systems
+ Focusing and beam pipe (if present) must be axisymmetric
- Useful for typical solenoidal magnetic focusing with a round beam pipe

+ Does not apply to alternating gradient quadrupole focusing since such
systems do not have the required axisymmetry

+ Subtle point: This form is really a Canonical Angular Momentum and
applies to solenoidal magnetic focusing when the variables are expressed
in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Dynamics

4) Axial Momentum

U, = /del /d%ﬁ_ myBpe f1 = const

+ Trivial in present model, but useful when equations of motion are
generalized to allow for a spread in axial momentum
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Comments on applications of the global conservation constraints:

+ Global invariants strongly constrain the nonlinear evolution of the system
- Only evolutions consistent with Vlasov's equation are physical
- Constraints consistent with the model can bound kinematically accessible
evolutions

+ Application of the invariants does not require (difficult to derive) normal mode
descriptions
- But cannot, by itself, provide information on evolution timescales

+ Use of global constraints to bound perturbations has appeal since distributions in
real machines may be far from an equilibrium. Used to:
- Derive sufficient conditions for stability
- Bound particle losses [O'Neil, Phys. Fluids 23, 2216 (1980)] in nonneutral
single-species, plasma columns (important for antimatter storage).
- Bound changes of system moments (for example the rms emittance)
under assumed relaxation processes; see S10
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S6: Kinetic Stability Theorem for continuous focusing equilibria
[Fowler, J. Math Phys. 4, 559 (1963); Gardner, Phys. Fluids 6, 839 (1963);
R. Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990)]

Resolve:

fi = fo(Ho) +dfL
fo(H 0) = Equilibrium (subscript 0) distribution

0f1L = Perturbation about equilibrium

Denote the equilibrium potential as ¢ = ¢g

10 8¢0 _ q 2
T or (Tw> = —a/d z' fo(Ho)

¢o(r =r,) = const

Then by the linearity of Poisson's equation,
q
vie—-1 [aa g,
¢(r =rp) = const

the perturbed potential d¢ = ¢ — ¢o must satisfy,

2 q 2,/
Vidg =~ [da of
0¢(r =rp) = const
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Employ generalized entropy and transverse energy global constraints (S5):

Ug = /szJ_ /d%l G(fL) = const

2 2 2 €|Vig)?
Ug:/d /dam_{x + kﬁoxj_}fl“!‘/dxj_W = const
Apply to equilibrium and full distribution to form an effective “free-energy” F:
AUqg = Ug — Ugop = const
AUg = Ug — Ugg = const

Both total and equilibrium hold
individually, so can add

F = AUg + AUg = const
1 1
_ / &2, [, {5x’f ; —k;éoxi} 1 — fo(Ho)]

V.i6]? v 2
mwbc? /dz {| P l;so\ } N /dzm /d% L) — CUfo)

Conservation of free energy applies to any initial distribution for any smooth,
differentiable function G
+ Use freedom in choice of G and constant value of F to make choices to

First manipulate self-field energy term in F:

¢ =¢o+d¢

1 1

3 /d2xi {IVLo]* = |VLio’} = 3 /dle {IVLo¢]> +2V ¢ -Vid0}
Div Theorem, and free to take
do(r =rp) =

= %/d%u_ IVidpl* + /d2,l'J_ {v. ./K;OVJ_M)) — ¢0V§_5¢>}

using the Poisson equation: Vig = - /d2r/ fL
0

1
== /d?xl Visg) + L /d2 /d% bodfL
2 €0
The free energy expansion then becomes:
F:/d2 /dle{ X2 + kﬂol-kﬂ}(sﬁ
myy e

€0 /deJ_ V.19 /d2 /deJ_ (fL) = G(fo)]

3322
enable bounding of perturbations my,Bye
= const
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I}le t(; lillirsblzl(t)il(r)lrtl,;lo assumptions whatsoever have been made on the magnitude of P / &z, { €o|V169|? 3 / d*z, L } — const
P ' 2mp 22 dfo(Ho)/0H,
Take |6f1| < fo and Taylor expand G to 2™ order
dG d2G 5f1)2 Fu(HD) concavity L
G(fL)=G(fo+0fL)=G(fo) + (fo)(SfJ_-i- (2fo) (0/1) +@((5fi) — Value of F set by initial
dfo df; 2 in function perturb‘atiobns ar:id
. . . concavny oundas
Without loss of generality,we can choose: space excursions
H,

AG(fo) _ o _ <; T+ kBO 2+ >

dfo my2G2c?
+ This choice can always be realized
Then
FG(fo)  0Hy -1
dfg dfo  0fo(Ho)/OHyg

and the expression for the free energy further reduces to:

V1g)? (0f1)?
F:/dzam_ {60| —/dQ’ — +0(6f3) = const
2my; B3> L 9 fo(Ho) /0H, (011)
+If 0fo(Ho)/OHp < 0 then Fis a sum of two positive definite terms and
perturbations are bounded by F = const
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Drop zero subscripts in stability statement:

Kinetic Stability Theorem

If f,(H,) is a monotonic decreasing function of H1 with
Of1L(HL1)/0H, < 0 then the equilibrium defined by f, (H, ) is stable to
arbitrary small-amplitude perturbations.

+ Is a sufficient condition for stability
- Equilibria that violate the theorem satisfy a necessary condition for instability
but may or may not be stable
- But intuitively expect energy transfer to drive instability in such cases
+ Mean value theorem can be used to generalize conclusions for arbitrary amplitude
- R. Davidson proof
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/I Example Applications of Kinetic Stability Theorem

KV Equilibrium:

4
f
JL(HL) = 5—6(HL — H1p)
2m
hanges sign
OfJOH, Craneessie
fL/0H, inconclusive stability by theorem Hs R

+ Full normal mode analysis in Kinetic theory shows many strong instabilities when space-
charge becomes strong
+ Instabilities not surprising: delta function represents a highly inverted population in phase-
space with “free-energy” to drive instabilities ;
Waterbag Equilibrium:
fL(HL) = fo©O(HLip — Hy)
OfL/0H = fod(HL —Hip) <0
monotonic decreasing, stable by theorem

Thermal Equilibrium:

fL(HL) = foexp(—pHL),
0f1L/0H = —foBexp(—=BHL) <0

monotonic decreasing, stable by theorem T " 1
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Implications of density inversion theorem and the kinetic stability theorem

In the S.M. Lund lectures on Transverse Equilibrium Distributions, we showed in
a continuous focusing channel that knowledge of the beam density profile n(r) is
equivalent to knowledge of the equilibrium distribution function f1 (H 1) which
generates the density profile if the density profile is a monotonic decreasing
function of r
+ Consequence of Poisson's equation for the equilibrium and the connection
between f (H, ) and the density n(r)

Density Inversion Theorem

1o _ Lo
fi(Hy) =~ 2 O Sl 21 OY(r)/or =H,
1 ¢
V) = 3o+

Expect for a distribution with sufficiently rapid fall-off in the radial density profile
from concavity and this result that

df L (Hy)

>
dH <0

Stability (Kinetic Stability Theorem)
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Comment:
+ Result does not apply to periodic focusing systems
- Still expect more benign stability if beam density projection fall off monotonically in
the radial coordinate
- Density fall-off can be abrupt consistent with Debye screening
+ Expect stability issues with radially hollowed beams
- However, does not prove instability
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S7: rms Emittance Growth and Nonlinear Forces
Fundamental theme of beam physics is to minimize statistical beam emittance
growth in transport to preserve focusability on target

Return to the full transverse beam model with:

q 0¢

1/
2+ Ryt = ——— s —
* mypBEc? Ox

+ Applied Nonlinear Field Terms

and express as:
2" (s) + Ka(s)z(s) = f7 (s)a(s) + Fy “(z,y, 5)

f xL (s) = Linear Space-Charge Coefficient

Fév L (z,y,s) = Nonlinear Forces or Linear Skew Coupled Forces
(Applied and Space-Charge)

/I Examples:

L Q Self-field forces within an axisymmetric (mismatched) KV
[z (s) = ’
x B T ( 3) beam core in a continuous focusing model

sextupole optic based on multipole expansions
(see: lectures on Particle Equations of Motion)  //

z+ iy 2 Electric (with normal and skew components)
F;VL(m,y,s)O(Re l_>3( )

Tp
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From the definition of the statistical (rms) emittance:

ex = A[(x?) 1 (a%) 1 — (z2’)3]"/?

Differentiate the squared emittance and apply the chain rule:
cancel

d
<550 = 32(wa’) 2 1 + (2%) La'2") 1 — <m’);<m’2)¢ = (xz’) L (@2") 1]
= 32[(2”) L (2'2") L — (xa’) 1 (x2") 1]
Insert the equations of motion:
2" + kgx = fro 4+ FNE

In the moments and simplify. The linear terms cancel to show for any beam
distribution that:

d%ei =32 [(z?) L (2 FY") L — (@) 1 (2FY ") L]
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Implications of:

&2 =3[, @ EY L — Ga') (B ]
+ Emittance evolution/growth driven by nonlinear or linear skew coupling forces
- Nonlinear terms can result from applied or space-charge fields
- More detailed analysis shows that skew coupled forces
cause x-y plane transfer oscillations but there is still a 4D quadratic invariant
+ Minimize nonlinear forces to preserve emittance and maintain focusability
+ This result (essentially) has already been demonstrated in the problem sets for
J.J. Barnard's Introductory Lectures and S.M. Lund lectures on Centroid and
Envelope Descriptions

If the beam is accelerating, the equations of motion become:

!
" 4 —((’;bﬂﬁb)) o' 4 kpx = fre + ENE
v0b

and this result can be generalized (see homework problems) in terms of the
normalized emittance to account for x-x' phase space area damping with accel.

Enx = 'Yb/BbEz

d%six = 32(mh)? [(@®) L (&' F) L — (aa”) L@ F) 1 ]
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S8: rms Emittance Growth and Nonlinear Space-Charge Forces
[Wangler et. al, IEEE Trans. Nuc. Sci. 32, 2196 (1985), Reiser, Charged Particle Beams, (1994)]

In continuous focusing all nonlinear force terms are from space-charge, apply

FNE = ___ 499 i the emittance evolution formula of S7 to obtain:
my;Bic? Ox
d o 32q 2 , 00 p 0¢
55 T TR (@)1’ 501 —{ee) (o)L

For any axisymmetric (0/00 = 0) beam it can be shown that:

<x%h = %(T%M = _8;\60 W= %O/d% Vo
(x/%ﬂ = 1(7«' 8_¢>J_ = 1 _dv = self-field energy
ox 20 or 8megA ds (per unit axial length)
For any axisymmetric beam it can also be shown that:
(xz')) = §<T7”/>L S <x;>l d(‘;;“ W = W for an rms equivalent

uniform density beam
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Insert results and collect terms, giving (Wangler, Lapostolle):

d , o d (W—W, _ qA
255 = ~8Q7) Lo <T> = 2megmy} BRc

= const

+ Result sometimes called “Wangler's Theorem” in honor of extensive work by
Wangler on the topic

+ Applies to both radially bounded and radially infinite systems

+ Result does not require an equilibrium for validity — only axisymmetry

+ Result can be partially generalizable [J. Struckmeier and I. Hofmann,
Part. Accel. 39, 219 (1992)] to an unbunched elliptical beam

- Result may have implications to existence/nonexistence of nonuniform
density Vlasov equilibria in periodic focusing channels
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Application: Using Wangler's theorem to estimate emittance changes from
the relaxation of space-charge nonuniformities

Wangler's theorem:

d
@~

W = Field energy (nonuniform) beam

d (W —-W,
—8Q(z?%) | — —2u Wy = Field energy of rms equivalent
ds A - )
uniform density beam

If the rms beam radius does not change much in the beam evolution:
rf = 4(x?) ) ~ const
Then the equation can be trivially integrated, showing that:
W —W,
Ayi(---) = Final State Value — Initial State Value

So if the initial and final density profiles are known, the change in beam emittance
can be simply estimated by calculating associated field energies for the initial and
final nonuniform and rms equivalent uniform beams

+ Change in space-charge energy is converted to thermal energy (emittance)

+ Will find in most reasonable cases this effect should be small (see S10)

Is it reasonable to assume that the beam radius may not change much?
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Consider the rms envelope equation for a continuous focusing system to better
. . 2 _ n1/2
understand what is required for rj = 2(z")'" ~ const

2
/" 2 Q €z
ry +kgorp —— — = =0
b T RO Ty T}
+ Valid in an rms equivalent sense with €, # const for a non-KV beam

If the emittance term is small relative to the perveance term

2

S
Qs 2 =0
Ty Ty

and the initial beam starts out as matched we can approximate the equation as

k%orb—gzo = = 2
B0

then it is reasonable to expect the beam radius to remain nearly constant under

modest fractional changes in emittance of order unity. This ordering must be

checked after estimating the emittance change based the final to initial state

energy differences. See S9 and S10 analysis for a better understanding on how

this can be valid.
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Additional applications of Wangler's Theorem

Wangler's theorem: W = Field energy (nonuniform) beam

d d (W —-W,
—e2 = —8Q(z?) ] — 4211 Wy = Field energy of rms equivalent
ds ds A : .

uniform density beam

KV Beam:
(axisymmetric focus/beam, matched or mismatched, cont or s-varying focusing)
W=W, <= KV beam

Then
=0 <= ¢, = const

Hence, Wangler's theorem is consistent with the known result that a KV
distribution evolves with rms edge emittance €, = const
+ Result holds whether or not the (axisymmetric) KV beam is matched to the applied
focusing lattice or whether the focusing is constant or not

Is this the only solution with constant emittance?
No — Also true for a beams with self-similarly evolving density profiles
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Proof:
Consider a beam evolving with a self-similarly evolving density profile:

where s
r =23V = /2(r%) |

and g(x) is a smooth shape function satisfying the constraints

ro/r3 ro/r} 1
/ dr g(z) =1 / dzr zg(x) = =
0 0 2

+ Constraints merely insure correct beam line-charge ( A ) and
rms edge extent ( 7, ) consistent with assumptions made
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S9: Uniform Density Beams and Extreme Energy States

Construct minima of the self-field energy per unit axial length (W) for an
axisymmetric beam ( 9/06 = 0 ) which need not be continuously focused:

€
W:?O/d?xL Vgl

A\ = const

subject to: ... fixed line-charge

rp = \/2(r?)L = const ... fixed rms equivalent beam radius
Using the method of Lagrange multipliers to incorporate the fixed rms-radius
constraint, vary (Helmholtz free energy):

_ 2 2 [V.ig]? 2
F=W —pu\q)(r*), o< [d°z, €05 — T

and require that variations satisfy the Poisson equation and conserve charge to
satisfy the fixed line-charge constraint
/ A’z on =0

V266 = —Lon
€0
Take variations of F (terminate at 2™ order) giving:

OF o — /dsz {ur2 + const} on + € /d2xLVL¢ -Vidp + %/d2IL‘VL6¢|2

Here, we add zero to the equation to clarify a reference choice: const [ d°z1 én =0

Integrating the 2™ term by parts and employing the Poisson equation then gives:
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p = const

5¢|boundary =0

0F /d2am_ {q¢—ur2 — const} on + %/d2$J_|VJ_6¢|2

For an extremum, the first order term must vanish, giving within the beam:

q¢ = pr® + const

From Poisson's equation within the beam:

= const

Vie=—-Zn Lo ( @> d _deon
0

ror\"or )T Tt T |7 P

€0
This is the density of a uniform, axisymmetric beam, which implies that a
uniform density axisymmetric beam is the extreme value state of W

This extremum is a global minimum since all variations about the extremum (2nd
term of boxed equation above) are positive definite

5F|unif0rm beam X /d2wl|vlé¢|2 2 0
Result:

At fixed line charge and rms (envelope) radius, a uniform density beam
minimizes the electrostatic self-field energy
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The result:

At fixed line charge and rms radius, a uniform density beam
minimizes the electrostatic self-field energy

combined with Wangler's Theorem (see S8):

d , o d (W—W,
dsce = 8Q<m”ds< \2 )

W = Field energy (nonuniform) beam

Wy = Field energy of rms equivalent
uniform density beam

with (2?)) =77/4 ~ const shows that:

+ Self-field energy changes from beam nonuniformity drives emittance evolution
+ Expect the following trends in an evolving beam density profile
- Nonuniform density => more uniform density <=> local emittance growth
- Uniform density => more nonuniform density <=> local emittance reduction
+ Should attempt to:
maintain beam density uniformity to preserve beam emittance and focusability

Results can be partially generalized to 2D elliptical beams
[J. Struckmeier and I. Hofmann, Part Accel. 39, 219 (1992)]
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S10: Collective Relaxation of Space-Charge Nonuniformities and
rms Emittance Growth

The space-charge profile of intense beams can be born highly nonuniform out of
nonideal (real) injectors or become nonuniform due to a variety of (error)
processes. Also, low-order envelope matching of the beam may be incorrect due
to focusing and/or distribution errors.

How much emittance growth and changes in other characteristic parameters may
be induced by relaxation of characteristic perturbations?

+ Employ Global Conservation Constraints of system to bound possible changes
+ Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?
+ Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities — mode frequencies incommensurate
+ Nonlinear interactions, Landau damping, interaction with external errors, ...
+ Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions

- Envelope mismatch will not (coherent mode) unless amplitudes are very large

producing copious halo and nonlinear interactions
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Motivation for rapid phase-mixing mechanism for beams with intense space-
charge: strong spread in distribution of particle oscillation frequencies in the core
of the beam

Thermal equilibrium beam core results, see S.M. Lund lectures on
Transverse Equilibrium Distributions, S7

30 T T T T

CH 1
= 25¢ /oy =0.9 ]
2 ]
£ | -:
2 15} ]
A o/og = 0.1 0.8
= 10} / ]
g 0.7 :
Q) 0.2 0 3 e 0 6 4
= 5t : : ]
g

=

00 02 04 06 08 10
Oscillation Frequency, ks/kgo
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Estimate emittance increases from relaxation of nonlinear space-charge
waves if an initial nonuniform beam to a uniform density beam
+ Should result in max estimate since uniform density beam has lowest energy
as shown in S9

Nonuniform Initial Beam Uniform Final Beam

Relaxation
Processes

_»

Density, n(r)
Density, n(r)

Radius, r Radius, r

Reference: High resolution self-consistent PIC simulations shown in class
+ Continuous focusing and a more realistic FODO transport lattice
- Relaxation more complete in FODO lattice due to a richer frequency spectrum

+ Relaxations surprisingly rapid: few undepressed betatron wavelengths

observed in simulations
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Initial Nonuniform Beam Parameterization

p
all+ it (2)], or<r.
0, Te <17 < Tp

h = hollowing parameter
=n(r=0)/n(r=r¢)

n(r) = p = radial index

re = edge radius

2 _ |(p+2)(ph+4)

A= [ = mt [ EE00] =2 =\ TR

(p+2)h

Normalize profiles to compare common rms radius ( 1, ) and total charge ( )\ )

Hollowed Initial Density Peaked Initial Density

hollowed 12 peaked
= h=1/4 = h=4
'\% 50
S S
E uniform 08 uniform
< . = (h=1)
= (h=1) <06
H g
= '/ 2 04
2 : Z
8 g 02
0 n L L L H n L 0 L L L L "
0 02 04 06 08 1. 12 14 0 02 04 06 08 1. 12 14

Radius, 7/Te Radius. 7"/ Te
+ Analogous definitions are made for the radial temperature profile of the beam
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Example Simulation, Initial Nonuniform Beam
o/oo = 0.2 TInitial density: h=1/4, p=8 Initial Temp: h = infinity, p=2

U Botton ercss = 000 [

Unsp Betakon Perids = 0e0

a b 1 Lc

T B
“~b: Max Value (Theory Limit)
! Fluctuation Max o]

1.10

£ D El w0 e

G 3
antVm) Kand ¥ ooy

rpT— U, BsbenPorio = 251 Uit St Poccs - 400

fa e P

! Fluctuation Min

1.05

Average "Relaxed" Value

RMS Emittances Growth

a: Initial os| o5t

B B D 3 5 B
¢ o etV o) Kara¥um)

1.00% : . q
! Relaxation Distance
| o betton Pecc = 511
. . . 20 SRR 0L 2o

Undep. Betaton Peros = 733

0 2 4 6 8 [ g
Undpressed Betatron Periods g“f
Show movie of evolution " J

£ o El e

o e
et V) K ond Vi)

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]
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Simulation results for a broad range of strong space-charge

Theory estimates from global conservation constraints work well. What changes if

Initial beam Relased and transient beam the beam relaxes to a smooth thermal equilibrium instead? -- Very little change
ai/ag Density Temperature Emittance growth Undep. betatron periods to relax g 0_9;9
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Theory results based on conservation of system charge and energy used to calculate the Step 2: 5 oo
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S11: Emittance Growth from Envelope Mismatch Oscillations

Emittance growth from envelope mismatch oscillations
Similar energy conservation methods can be applied to estimate the effect on
emittance growth if the initial beam is envelope mismatched and the energy of the
mismatch oscillation is converted into emittance if the beam relaxes
+ See Reiser, Theory and Design of Charged Particle Beams, 1994, 2008
2
Tg-l-kgoﬁ,— 9—6—3; =0
Ty Ty

7yl ~ Max[(r, — 1p0)] k% Term can be large

rp0 = Matched Radius
kp = Breathing Mode Wave Number (k;"g = 4kjy — 2 9 )

i
Large emittance increases can result from the relaxation of mismatch oscillations,
but simulations of beams with high space-charge intensity suggest there is
no mechanisim to rapidly induce this relaxation
+ Envelope oscillations are low-order collective modes of the beam and are thereby
more likely to be difficult to damp.
+ Possible exception: Lattice with large nonlinear applied focusing forces
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S12: Non-Tenuous Halo Induced Mechanism of Higher Order Instability
in Quadrupole Focusing Channels

In periodic focusing with alternating gradient quadrupole focusing (most

common case), it has been observed in simulations and the laboratory that good

transport in terms of little lost particles or emittance growth is obtained when the
applied focusing strength satisfies:

oo < 85° little dependence on o /o

It has been a 40+ year unsolved problem by what primary mechanism this limit
comes about. It was long thought that collective modes coupled to the lattice
were responsible. However:

+ Modes carry little free energy (see S10) to drive strong emittance growth

+ Particle losses and strong halo observed when stability criterion is violated

+ Collective internal modes likely also pumped but hard to explain with KV

Recent progress helps clarify how this limit comes about via a strong halo-like
resonance mechanism affecting near edge particles
+ Does not require an equilibrium core beam
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Review: In the SBTE experiment at LBNL:
Higher order Vlasov instability with strong emittance growth/particle
losses observed in broad parametric region below envelope band

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
Stable

Min — 1.0
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Max 000366600 120 150 180
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Results summarized by og < 85° for strong space-charge
+ Reliably applied design criterion in the lab
+ Limited theory understanding for 20+ years; Haber, Laslett simulations supported
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Self consistent Vlasov stability simulations were carried out to better
quantify characteristics of instability

+ Carried out using the WARP PIC code from LLNL/LBNL
+ High resolution/stat 2D x-y slice simulations time-advanced to s-plane
+ Non-singular, rms matched distributions loaded:
- semi-Gaussian
- Continuous focusing equilibrium f(H) with self-consistent
space-charge transformed to alternating-gradient symmetry:
waterbag
parabolic
Gaussian/Thermal
+ Singular KV also loaded - only to check instability resolutions

More Details:

Stability simulations:
Lund and Chawla, “Space-charge transport limits of ion beams in periodic quadrupole
focusing channels,” Nuc. Instr. Meth. A 561, 203 (2006)

Initial Loads applied:
Lund, Kikuchi, Davidson, “Generation of initial distributions for simulations with high
space-charge intensity,” PRSTAB 14, 054201 (2011)
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Parametric simulations of non-singular, initially rms matched distributions have
little emittance evolution outside of instability regions experimentally observed

Example: initial thermal equilibrium distribution
* Density along x- and y-axes for 5 periods
+ Emittance growth very small -- 5 period initial transient shown

Superimposed Density Snapshots Emittance Evolution
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Parametric PIC simulations of quadrupole transport agree with experimental
observations and show that large rms emittance growth can occur rapidly
Parameters: oy = 110°, 0/og = 0.2 (L, = 0.5 m, n = 0.5)

for initial semi-Gaussian distribution

Star Loal LivGIvps B P P

T R ———
| | r 100% 1
E £°r 95%
1 =
=P =l 1
E 4 W L i
8 I 50% i
) oL |
kel n 2r |
i} = L B
2 Tm I .
T 10 o= L .
> P4 L -
> 1 .
1 50?0
0 5 10 15 20 0 5 10 15 20

Lattice Periods Lattice Periods

Higher 4 < 85° makes the onset of emittance growth larger and more rapid
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Parametric simulations find broad instability region to the left of the
envelope band -- features relatively insensitive to the form of the
(non-singular) matched initial distribution

+ Where unstable, growth becomes larger and faster with increasing o

Example Parameters: o9 = 110°, 0 /09 = 0.2 (L, = 0.5 m, n = 0.5)

1
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g
= 0
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8
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Essential instability feature -- particles evolve outside core of the beam
precludes pure “internal mode” description of instability
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Self-consistent Poincare plots generated for the case of instability show
large oscillation amplitude particles have halo-like resonant structure --
qualitative features relatively insensitive to the initial distribution

Lattice period Poincare strobe| ;<
o9 =110° o/op =0.2 ‘
Semi-Gaussian Thermal Equilibrium

x-x' Poincare Plot: s/L, = [ 2.25,19.25], strobe = 1.00
T T T T T T T

x—x' Peincare Plot: s/lp = [ 2.25,19.25], strobe = 1.00

crvnbrrre e b b
= =
w E 'xg
o o5
R ==
< < g i
S QO x
w = wn
Z X
T T i -5 , , . , |
-2 -1 0 1 2 2 o 2
Scaled x Scaled x

+ Particles evolving along x-axis particles accumulated to generate clearer picture
- Including off axis particles does not change basic conclusions
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Extensive simulations carried out to better understand the parametric
region of strong emittance growth

+ All simulations advanced 6 undepressed betatron periods

- Enough to resolve transition boundary: transition growth can be larger if run longer
+ Strong growth regions of initial distributions all similar (threshold can vary)

- Irregular grid contouring with ~200 simulations (dots) thoroughly probe instabilities

initial semi-Gaussian initial Waterbag

+ [Initial KV similar with extra unstable

#+ Initial thermal/Gaussian

almost identical internal modes deep in stable region
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Motivated by simulation results -- explore “halo”-like mechanisms to
explain observed space-charge induced limits to quadrupole transport

+ Resonances can be strong: driven by matched envelope flutter and
strong space-charge
+ Not tenuous halo:
Near edge particles can easily evolve outside core due to:
- Lack of equilibrium in core
- Collective waves
- Focusing errors, ....
Most particles in beam core oscillate near edge

+ Langiel first attempted to apply halo mechanism to space-charge limits
Langiel, Nuc. Instr. Meth. A 345, 405 (1994)
Appears to concluded overly restrictive stability criterion: gy < 60°
+ Refine analysis: examine halo properties of particles launched just outside
the rms equivalent beam core and analyze in variables to reduce “flutter”

Lund and Chawla, Nuc. Instr. Meth. A 561, 203 (2006)
Lund, Barnard, Bukh, Chawla, and Chilton, Nuc. Instr. Meth. A 577, 173 (2007)
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Core-Particle Model --- Transverse particle equations of motion for a test particle
moving inside and outside a uniform density elliptical beam envelope

y
n QQF:B Elliptical
T F R = — X Beam -
(ry +1ry)rs ¥
2QF, x
" Y
Y Ry = —--Y
Y (ry +1y)1y
2 dimension] )
B s Y 1mensionless perveance
2meomy; B c? P
Where: inside the beam outside the beam:
r ~
=1 Fy=(rs + Ty)fRe[S}
F,=1 Ty -
F,=—(ry +ry)=Im|S
i (ra + ) 23
R Y P Sk 1) P

2 _ 2 2 .
TE Ty Z i=+v_1

1 1 1T§fr§ 1(rgfrz)2
iz |'te = ts o m T
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Particles oscillating radially outside the beam envelope will experience
oscillating nonlinear forces that vary with space-charge intensity and can
drive resonances

Continuous Focusing Axisymmetric Beam Radial Force

2.0
Beam Edge oig,=04
o L3 :
Q
2 6/G,=0.6
£ =
E 1.0 5/50:0,8
3 o/6,=1.0 N
0.5 \ 5/50:0.0
0.0
0.0 0.5 1.0 1.5 2.0

Radius, rll'rb
+ Nonlinear force transition at beam edge larger for strong space-charge
+ Edge oscillations of matched beam enhance nonlinear effects acting on particles

moving outside the envelope
+ In AG focusing envelope oscillation amplitude scales strongly with o
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For quadrupole transport, relative matched beam envelope excursions increase

with applied focusing strength
+ Larger edge flutter increases nonlinearity acting on particles evolving outside the core

L

? ds
Ty = —rx(s
/o L, (s)

1.4
12 n=05 L,=05m
L0 Q=5x%x10"*
) €s = €y = 50 mm-mrad
0.8 o/og
0.6 45°1 0.20
0.0 62 OI4 66 OI8 1.0 80%) 0.26
' ‘ ) ‘ : ' 110°| 0.32

Lattice Period, s/L,

Space-charge nonlinear forces and matched envelope flutter strongly drive
resonances for particles evolving outside of beam edge
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Core-particle simulations: Poincare plots illustrate resonances associated with
higher-order halo production near the beam edge for FODO quadrupole transport

+ High order resonances near the core are strongly expressed

Core-particle simulations: Poincare phase-space plots illustrate stability regions
where near edge particles grow in oscillation amplitude: launch [1.1,1.2]x core

Cl(sstable): a9 = 95°, 0/og = 0.67
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Core-particle simulations: Amplitude pumping of characteristic “unstable”
phase-space structures is typically rapid and saturates whereas stable cases
experience little or no growth

¢/ry
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Core particle simulations: Stability boundary data from a “halo” stability
criterion agree with experimental data for quadrupole transport limits

+ Start at a point (o, o) deep within the stable region
# While increasing og vary ¢ to find a point (if it exists) where initial launch
groups [1.05, 1.10] outside the matched beam envelope are pumped to max
amplitudes of 1.5 times the matched envelope
- Boundary position relatively insensitive to specific group and amplitude growth choices

1.0 ,
Stabl .
08 woe Stability boundary
points for two
o 061 Stable . .
S . slightly different
< H ;
g 04 A Envelope amplitudes
02 i Tty (triangles, squares)
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Other halo analyses of transport limits conclude overly restrictive limits:

TiTe E .
Scaléd X 12 Scaled x 32 [Lagniel, Nuc. Instr. Meth. A 345, 405 (1994)]
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Contours of max particle amplitudes in core particle model suggest
stability regions consistent with self-consistent simulations and experiment

Max amplitudes achieved for particles launched [1.05,1.1] times the core radius:
- Variation with small changes in launch position change picture little
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Note: consistent with PIC results, instability well above envelope band not found
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Discussion: Higher order space-charge stability limits in periodic
quadrupole transport

High-order space-charge related emittance growth has long been observed in
intense beam transport in quadrupole focusing channels with oo =, 85°
+ SBTE Experiment at LBNL [M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
+ Simulations by Haber, Laslett, and others
A core-particle model has been developed that suggests these space-charge
transport limits result from a strong halo-like mechanism:
+ Space-Charge and Envelope Flutter driven
+ Results in large oscillation amplitude growth -- strongly chaotic resonance chain
which limits at large amplitude rapidly increases oscillations of particles just
outside of the beam edge
+ Not weak: many particles participate -- Lack of core equilibrium provides pump of
significant numbers of particles evolving sufficiently outside the beam edge
+ Strong statistical emittance growth and lost particles (with aperture)

Mechanism consistent with other features observed:
+ Stronger with envelope mismatch: consistent with mismatched beams more unstable
+ Weak for high occupancy solenoid transport: less envelope flutter suppresses
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More Details:

Lund and Chawla, Space-charge transport limits of ion beams in periodic quadrupole
focusing channels, Nuc. Instr. Meth. A 561, 203 (2006)

Lund, Barnard, Bukh, Chawla, and Chilton, A core-particle model for periodically
focused ion beams with intense space-charge, Nuc. Instr. Meth. A 577, 173 (2007)

Lund, Kikuchi, and Davidson, Generation of intial kinetic distributions for simulation of
long-pulse charged particle beams with high space-charge intensity, PRSTAB 12,
114801 (2009)
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S13: Non-Tenuous Halo Induced Instability in Solenoidal Focusing

To be added

SM Lund, USPAS, June 2011 Transverse Kinetic Stability 92




Analogous core-particle stability studies have been carried out for periodic
solenoidal transport channels

Occupancy 7}

Ko(s) B (ky = Ky) n e (0,1]
i | } =S
/2 " nL, 42 dj2
| d=(1-n)L,/2
| . =Ly
‘ Lattice Period ‘

Solenoidal focusing weaker than quadrupole focusing:
- Less focusing than quadrupole for similar total field energies
- Matched envelope flutter less, and scales strongly with 7
- Limit n = 1 stable (continuous focusing) with no envelope flutter
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Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

Solenoidal Focusing
Quadrupole Focusing

) (A=n)(1=n/2)
6

(1-n/2)
23/2(1_2,,]/3)1/2
Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)
for limit o/og — 0

rm|max 1~ (1 — COS O
Tz “ ] (1—cosap)'/?

+ Solenoids:
- Varies significant with both 6, and n

# Quadrupoles:
- Phase advance o, variation significant

- Occupancy m variation weak
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Envelope band instabilities and growth rates for periodic solenoidal and
quadrupole doublet focusing lattices

Envelope Mode Instability Growth Rates

Solenoid (1 _=0.25) Quadrupole FODO (7 _=0.70)
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[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]
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Similar space-charge dependent amplitude growth is observed as in
quadrupole focusing, but the effect is weaker and occupancy dependent
due to different matched envelope flutter scaling in solenoidal focusing
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S14: Phase Mixing and Landau Damping in Beams

To be covered in future editions of class notes
+ Likely inadequate time in lectures
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG 47R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

SMLund@1bl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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