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+ Some of this material related to J.J. Barnard lectures:
- Transport limit discussions (Introduction)
- Transverse envelope modes (Continuous Focusing Envelope Modes and Halo)
- Longitudinal envelope evolution (Longitudinal Beam Physics III)
- 3D Envelope Modes in a Bunched Beam (Cont. Focusing Envelope Modes and Halo)
# Specific transverse topics will be covered in more detail here for s-varying focusing
+ Extensive Review paper covers envelope mode topics presented in more detail:

Lund and Bukh, “Stability properties of the transverse envelope equations

describing intense ion beam transport,” PRSTAB 7 024801 (2004)
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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (9/0z = 0)
beam v

Aperture

Transverse averages:
fd2xj_fd2x3_ f_L

Aperture Center

1. e J_ E
Centroid: - . () Jd2x, [d22 fo
X ={(z), x- and y-coordinates
Y = (y)1 of beam “center of mass”

x- and y-principal axis radii

of an elliptical beam envelope
+ Apply to general f| but base on uniform density fi
# Factor of 2 results from dimensionality (diff 1D and 3D)

Envelope: (edge measure)

re =2V/((x — X)?)1
ry =2V ((y = Y)?*)1
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Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and are suppressed to the extent

possible:
+ Error Sources:
- Beam distribution assymetries (even emerging from injector)
- Dipole bending terms from applied field optics (due to field error or mech misalignment)
- Imperfect mechanical alignment
+ Exception: When the beam is kicked (insertion or extraction) into or out of a transport

channel as is often done in rings
Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter” synchronized to period of focusing lattice to
yield net focusing
+ Properly tuned flutter essential in Alternating Gradient quadrupole lattices
2) Mismatched Envelope: Excursions deviate from matched flutter motion and are
seeded/driven by errors

Limiting maximum beam-edge excursions is desired for economical transport
- Reduces cost by Limiting material volume needed to transport an intense beam
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes
(see: J.J. Barnard lectures on Envelopes and Halo)
Example: FODO Quadrupole Transport Channel

o Envelope Solution: Matched and Mismatched Beam
T

! P MisMatched Beam (Dashed)
1 i

Black: x—envelope
l Red: y-envelope

Green: x—focusing

X,Y Envelopes (mm)

/ i
r \ Matched Beam (Solid)

0 5 10 15
Axial Coordinate, s (m)

# Larger machine aperture is needed to confine a mismatched beam
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

+Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
+Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in

machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
is not alone sufficient for effective machine operation

+Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- To be covered (see: S.M. Lund, lectures on Kinetic Stability)
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (9/9z = 0) beam
Transverse Statistical Averages:
Let N be the number of particles in a thin axial slice of the beam at axial

coordinate s. R -
\;7;7/

Beam

Axial Coordinate, z

Thin'S]ice. N >> 1 Particles
Averages can be equivalently defined in terms of the discreet particles making up
the beam or the continuous model transverse Vlasov distribution function:
N
1
¥
i=1lglice
distributi () _ &Py [P - fL
istribution: )L =
fdQ.TJ_ fdQ.Tl fJ_

particles: (-1

+ Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Dynamics], take:

(’Ybﬁb)' / q 0¢
"+ (6) By &t et = 7m'ygﬂ562 Oz | Assume:
(’Yb ﬁb)/ q 9 ¢ #+ Unbunched beam
y y + Byy = — # No axial momentum spread
(Vbﬁb) m'yb v B5c dy + Linear applied focusing fields
2 2 described by Kz, Ky
Vi(lﬁ = (68 5t %) --£ + Possible acceleration, V50
v Y €0 need not be constant
p= q/d2xl fi ¢|aperturo =0

Various apertures are possible influence solution for ¢. Some simple examples:
Round Pipe

Elliptical Pipe Hyperbolic Sections

y
a—
>
Ny Y

In rings with dispersion:
in drifts, magnetic optics, ....

Linac magnetic quadrupoles,

acceleration cells, .... Electric quadrupoles
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous

@b | (==K, =const) ) Lattice Period Ly,
kpo
- Occupancy 7
\ |b) Periodic Solenoid n € [0,1]
Kal() (ke =1%) 2
Solenoid description
carried out implicitly in
jt Larmor frame
a2 ni, an . an [see: S.M. Lund lectures on
o d=(1-mL, Transverse Particle Dynamics]
p | ©) Periodic Quadrupole Doublet
1,(5) (K, =1 A )
K Syncopation Factor «
d L2,
F Quad o 1
D Quad s o € [O, 5]
NLy/2
,{Qq _ 1
L, dy=o(l-nJL, o = 5 — FODO
Lattice Period dy=(1-0)(1-1)L,
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Distribution Assumptions

To lowest order, linearly focused intense beams are expected to be nearly uniform
in density within the core of the beam out to an edge where the density falls
rapidly to zero

y Charge conservation requires:
A = const
Vi Uniform density in beam:
A
N TT2Ty

TreTy

p(z,y) ZQ/del fr = 0, (= X)?/r2+(y—Y)?/ry > 1

)\:q/dQl'J_/dQl'lJ_fJ_ =/d2$p = const
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{ A (z—X)?/ri4+(y-Y)/ri <1

SM Lund, USPAS, June 2011

Comments:
+Nearly uniform density out to a sharp beam edge expected for near
equilibrium structure beam with strong space-charge due to Debye screening
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions
+Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high
+Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution
- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution!
- Analogous to closures of fluid theories using assumed equations of state etc.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

M= li h.
JY— 0 ine charge

E, =

 2meg x1 — %|2 x| =% = coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

s o¢ d i and superimpose free-space
x| solutions for direct and image contributions
Direct Field
1 ~pE)(xL —%1) beam charge

El(x)) = a2z — 1 g

10x) 2m / + |x1 — %1 |? p(x) density
Image Field i e 5 ) beam image charge
El (x)= L / &’z P (XJ-)(XJ: 72XJ—) p'(X) = density induced on

2meg |x — %1 | aperture
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Direct Field:
The direct field solution for a uniform density beam in free-space was
calculated for the KV equilibrium distribution
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions

YA
Vs Uniform density in beam:
p= = const
: TrzTy
X T
d A z—-X . . i
E; = — Expressions are valid only within

71'_60 (rg +ry)re
A y—Y
meg (Tg + Ty)Ty

the elliptical density beam -- where

E;i = they will be applied in taking averages
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Image Field:

Image structure depends on the aperture. Assume a round pipe
(most common case) for simplicity.

A I
Y A 7 = Ar=—Xo image charge
1
2
x; = —2_x, image location
%0l
>
T Will be derived in the
p the problem sets.
¢(r =1p) = const

superimpose all images of beam:

El(x1) = -

1 / L3 p(xL)(xe — Xy /%)
pipe

o7eo T — 2% IR PP

+ Difficult to calculate even for p corresponding to a uniform density beam

Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:

Y

choose coordinates to
make true
A

/ X T

Ty
p(x1) = Mo(x. — XX)

Plug this density in the image charge expression for a round-pipe aperture:
+ Need only evaluate at X; = XX since beam is at that location

i : .
B = X0 = o X -

# Generates nonlinear field at position of direct charge
+ Field creates attractive force between direct and image charge
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2) Centere(i, uniform density elliptical beam: 3) Uniform density elliptical beam with a small displacement along the x-axis:
V=0 [ X|/rp <1
p(X ) A ﬂrjry’ .'L’2/’)"3 + y2/7'§ <1
1) =
2 /.2 2 /.2
mrzTy |0, x2fry +y*/ry > 1

Expand using complex coordinates starting from the general image expression:

+ Image field is in vacuum aperture so complex methods help calculation
o0

(z —dy)"

1
E"=F —iE = Y cz2" = omes oL L)

z=x+1wy

i=+v-1

Cpe
n=2,4,-

pipe 13
2

The linear (n = 2) components of this expansion give:

. A
Bi= -2
¥ 8meg

2 2
re—T ,
T yx Bt —

2 2

ATy
4 ) y 4
T 8meg T,

Y

_ An! Ty —T
"~ 27me02n(n/2 + 1)!(n/2)! rg

2)71/2
Y

+ Rapidly vanish (higher order terms more rapid) as beam becomes more round
+ Case will be analyzed further in the problem sets

SM Lund, USPAS, June 2011
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Expand using complex coordinates starting from the general image expression:
# Use complex coordinates to simplify calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
+ Expressions become even more complicated with simultaneous
x- and y-displacements and more complicated aperture geometries
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Leading order terms expanded in | X|/7p without assuming small ellipticity obtain:

E. =

® 27re r2
E;, =

4 27re 2

G- >+g~X1+e(%)3

), 3
’I“

p

Where f and g are focusing and bending coefficients that can be calculated in terms of
X, Y, 7y, Ty (which all may vary in s) as:

FocusingTerm:
r —7" X
f=

. 2
+_2 1+§ rZ—r; +§ 2 —ry
4r2 r2 2 r2 8 r2

+ Expressions become even more complicated with simultaneous x- and y-

displacements and more complicated aperture geometries

Comments on images:
+Sign is generally such that it will tend to increase beam displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
+Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry formulas can give idea on scaling
- Generally suppress just by making the beam small relative to characteristic
aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
+Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture due to changes in
accelerator lattice elements and/or as beam symmetries evolve

Elliptical Pipe Hyperbolic Sections

Round Pipe

- == Ty
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Coupled centroid and envelope equations of motion Derive centroid equations: First use the self-field resolution for a uniform density
: . o beam, then the equations of motion for a particle within the beam are:
Consistent with the assumed structure of the distribution
uniform density elliptical beam), denote: ! 2 | -
( v P ) +(7bﬁb)m +nz:c74Q (a:fX):i—3q22 .
. (’Ybﬁb) (7”90 + Ty)'rx moyy, Bb c
Beam Centroid: / ;
] +(’Ybﬁb) —l—ﬁy—L(y—Y)—fL i
— i ! -
X = (), X' = (), ) (18 Y (re )y mplyet Y
Y = ! — !
(y)L Y'=(y)1 Direct Terms Image Terms
Coordinates with respect to centroid: v Perveance:
- g A . .
T=x—X =z -X ’ =9 (not necessarily constant if beam accelerates)
.y oy T 2meomy B c?
Y=y Yy =y — average equations using: ('), = (z)/, = X' etc., to obtain:
Envelope Edge Radii: Centroid Equations:
x
=2/(z2), r,=2E¥). /(@) V)’ 27reo
* <~ > f "+ (( 3 )) X' +k +X =Q <E;>J_ Note: the electric image
ry =2/ Ty =291/ %ﬂ / ) field will cancel the
TE ; =
With the assumed uniform elliptical beam, all moments can be calculated "+ ((% ﬁb )) Y'+ & Y =Q [ 0 <E; >J_:| coefficient 2meo /A
intermsof: X, Y Tz, Ty TP

+ Such truncations follow whenever the form of the distribution is “frozen”

SM Lund, USPAS, June 2011
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* E‘;> 1 will generally dependon: X, Y and 74, Ty
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To derive equations of motion for the envelope radii, first subtract the centroid
equations from the particle equations of motion ( & = x — X ) to obtain:

(’Ybﬂb)/ - QQZZ' _ q i i
" Gy (oo Fo (re +1y)re M} PR [ — (o) ]
~11 (Vbﬁb)/ QQg _ q .
. (%Bb) V- (re +ry)re my; B c? [E (Ey)L ]

Differentiate the equation for the envelope radius (y-equations analogous):
2zz'y, 4@z’
~o\1/2 / —
Tw:2<x>i/ = = oapm
@)/ Te
Define (motivated the KV equilibrium results) a statistical rms edge emittance:

N -  oq1/2
€p =465 ms =4 [(ac2)J_<ac'2)J_ — (wx')ﬂ /

Differentiate the equation for 7, again and use the emittance definition:
i’ 16[(22%) 1 (&%) L — (23)3
B 16 ) s — )]

T 3
Sl 2
<.’L‘.’E >L €z
—4 =z
T 7'1.

and then employ the equations of motion to eliminate %" in (ja?") | to obtain:
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Envelope Equations:

" (’Ybﬁb) 2Q Ei TEO |~ 1
2l — ————— — 3 = 8 - E:p

x+(7bﬂb)r Rt Te Ty T3 Q[/\@ >]
" ('Ybﬂb)/ 2Q 5»3 TEQ |~ 1
__tx _ Y _ 2 E

y T ('Ybﬂb) T + KyTy P TZ 8Q [ Y <y y>J_]

> <5E;>J_will generally dependon: X, Y and 1y, 7y

Comments on Centroid/Envelope equations:
+Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected
+Image terms contain nonlinear terms that can be difficult to evaluate explicitly
- Aperture geometry changes image correction
+The formulation is not self-consistent because a frozen form (uniform density)
charge profile is assumed
- Uniform density choice motivated by KV results and Debye screening
see: S.M. Lund, lectures on Transverse Equilibrium Distributions
- The assumed distribution form not evolving represents a fluid model closure
- Generally find with simulations that uniform density frozen form distribution
models can provide reasonably accurate approximate models for centroid and
envelope evolution
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Comments on Centroid/Envelope equations (Continued):
+Constant (normalized when accelerating) emittances are generally assumed
- For strong space charge emittance terms small and limited emittance
evolution does not strongly influence evolution outside of final focus
- See: S.M. Lund, lectures on Transverse Particle Dynamics and
Transverse Kinetic Theory to motivate when this works well

Bbs Yo, A s-variation set by acceleration schedule

Enz = YpPpEx = const

— used to calculate €4, €
Eny = YbPpEy = const

2
2
27rm60fyb B2c
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S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

(5) s _
"+ o) — X 4+ kX =0
iy wB) s kY =0

(7606)

+Usual Hill's equation with acceleration term

+Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Dynamics: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances with
normalized coordinates and/or that acceleration is weak and can be neglected with
Then single particle stability results give immediately:

1
§|Tr M, (si + Lplsi)| <1

O0x < 180°
ooy < 180°

centroid stability

1 St atatnils Lo
§|Tr M, (si + Lylsi)| < 1 1" stability condition
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/Il Example: FODO channel centroid evolution

. lattice/beam
Mid-drift i X parameters:
. » 1

launch: :g . B, = const

X(0) =1mm ! 00z = 80°
X'(0)=1mrad L,=05m

3 K
My ey n=05

0 2 4 6 8 10 12 14 16
s/Ly, Lattice Periods
+ Centroid exhibits expected characteristic stable betatron oscillations
+ Motion in y-plane analogous

"
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Effect of Driving Errors

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance:

// ('Ybﬁb ’
X ) N ZGnn(sX ZGnn(s on

Kq(s) = Z Kin(8)

ren nth quadrupole gradient error (unity for no error; s-varying)
0

A,, = nth quadrupole transverse displacement error (s-varying)
/I Example: FODO channel centroid with quadrupole displacement errors

kn(s) nominal gradient function, nth quadrupole

15
Gu | .
Gy g
2 lid ith
Apn = [70_5,0_5] mm > S sol1 — with errors
(uniform dist) = ° dashed — no errors
é 5
. g
same lattice (ST
as previous
-15

0 10 20 30 40 50

s/ Ly, Lattice Periods 11/
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Errors will result in a characteristic random walk increase in oscillation amplitude
due to the (generally random) driving terms.

Control by:
+ Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y'
+ Fabricate and align focusing elements with higher precision
+ Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

X" + ('Ybﬁb) \P) Xt 4 e X = QX examine oscillation
(6/8) r2 — X2 along x-axis
QX Q Q ;3
—— X+ =X
RS A

linear correction \ Nonlinear correction (smaller)

Example: FODO channel centroid with image charge corrections

rp = 30 mm
Q=2x10"" solid — with images

dashed — no images

Centroid X [mm]

same lattice
as previous

0 10 20 30 40 50
s/ Ly, Lattice Periods
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Main effect of images is generally an accumulated phase error of the centroid orbit
since, generally the centroid error oscillations are not “matched” orbits and errors
are not regularly “undone”

# This will complicate extrapolations of errors over many lattice periods

Control by:
+ Keeping centroid displacements X, Y small by correcting
+ Make aperture (pipe radius) larger

General Comments:

+Images contributions to centroid excursions generally less problematic than
misalignment errors in focusing elements

+*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y is often weak

+ Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice

- Non-ideal orbits are poorly tuned to lattice and become more sensitive to
the precise phase of impulses

+ Over long path lengths many nonlinear terms can influence results

+ Lattice errors are not often known so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
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S4: Envelope Equations of Motion

Overview: Reduce equations of motion for 75, 7y
+Generally found that couplings to centroid coordinates X Y are weak
- Centroid ideally zero in a well tuned system
+Envelope eqns are most important in designing transverse focusing systems
- Expresses average radial force balance (see following discussion)
- Can be difficult to analyze analytically for scaling properties
- “Systems” codes generally written using envelope equations, stability
criteria, and practical engineering constraints
+Instabilities of the envelope equations in periodic focusing lattices must be
avoided in machine operation
- Instabilities are strong and real: not washed out with realistic distributions
without frozen form
- Represent lowest order “KV”” modes of a full kinetic theory
+Previous derivation of envelope equations relied on Courant-Snyder
invariants in linear applied and self-fields. Analysis shows that the same
force balances result for a uniform elliptical beam with no image couplings.
- Debye screening arguments suggest assumed uniform density model taken
should be a good approximation for intense space-charge
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KV/rms Envelope Equations: Properties of Terms

The envelope equation reflects low-order force balances:

” ('Ybﬁb)/ ’ 2Q 5:2c _
Ty t STy T Kale — ——/—— — 3 =0
(wBe) © T ety 13
| | | ; i 2
" ('Ybﬂb)/ ;o | ; 3 2Q | Sy 0
Ty T o)y T Ry - - T 3 T
(’Ybﬁb) ; ; | ry + Ty Ty
Applied Applied Space-Charge  Thermal
Acceleration ~ Focusing  Defocusing Defocusing
Terms: Lattice Lattice Perveance Emittance

The “acceleration schedule” specifies both 7,3, and \
then the equations are integrated with:

YoBpE, = const

normalized emittance conservation
Yo Bpey = const

qA

= —s specified perveance
2meqmy;p BEc? P p
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Reminder: It was shown for a coasting beam that the envelope equations
remain valid for elliptic charge densities suggesting more general validity
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

22 yz Based on:
r=r(5+%) @), = T
@ v ox dmeg rz + 1y
see J.J. Barnard, Intro. Lectures

the KV envelope equations

2(s
r7(s) + Ku(s)ra(s) — Tz(s)zfry(s) B 2285 =0
) 20 ey(s) _

() RN - e T Re)

remain valid when (averages taken with the full distribution):

A
Q=q4:const /\:q/deJ_p:const

2meomy; B c?

ea = 4(2%) L (@)1 — (za")3]"2

1/2

Ty = 2<x2)1l/2

1/2 _ 2 _ 2
ry =20y ey =4[(y") L)L — ()1l

*+ Evolution changes often small in ¢, g,
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Properties of Envelope Equation Terms:

’ (1),

Applied Focusing: Ko7z, #yry and Acceleration: (7660) L,
YoPb

()

+ Analogous to single particle orbit terms
+Contributions to beam envelope essentially the same as in single particle case
+Have strong s dependence, can be both focusing and defocusing

- Act only in focusing elements and acceleration gaps

2Q
Ty + Ty
+ Acts continuously in s, always defocusing
+Becomes stronger (relatively to other terms) when the beam expands in cross-
sectional area

Perveance:

2
T

. 5
Emittance: —
r3
x
+ Acts continuously in s, always defocusing
+Becomes stronger (relatively to other terms) when the beam becomes small in
cross-sectional area
+Scaling makes clear why it is necessary to inhibit emittance growth for

applications where small spots are desired on target
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As the beam expands, perveance term will eventually dominate emittance term:
[see: Lund and Bukh, PRSTAB 7, 024801 (2004)]

Free expansion (k; = ky = 0)

Initial conditions: Cases:
T2(8i) = 1y(8:) Q 2 Space-Charge Dominated: ¢, = 0
T r3(g. . .
7 (s:) =7y (s:) =0 ro(si) 2@(81) Emittance ~ Dominated: Q@ =0
_ & _ -3
Q= 5 =10
r3(si)
3.0
r, ($)Ir, (Si) See next page: solution is
a 2.5 S h analytical in bounding
° Dpac.e_ arge limits shown
7] ominated
g 20
o, / Parameters are chosen such
[}j 1.5 r x(s) r x(si) that initial defocusing
: Emittance forces in two limits are
1.0 Dominated equal to compare case

00 01 02 03 04 05

Axial Coordinate, s—s;, (m)
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For an emittance dominated beam in free-space, the envelope equation becomes:

Q g?E,y 1
<3 j

Ty Ty rgﬂ

Jj=xy

The envelope Hamiltonian gives:

1 /2 €J2'
§rj + E = const
which can be integrated from the initial envelope at s = s; to show that:
Emittance Dominated Free-Expansion (Q = 0)
2" (s;) r2(s;)r"?(s;) | €2
ri(s) =ri(si) |1+ —L—(s—si)+ |1+ -2 a L (s —si)?
.7( ) ]( 7«) T](Sz) ( Z) 6]2_ ’I‘;l(sz)( 1)
J=ay
Conversely, for a space-charge dominated beam in free-space, the
envelope equation becomes:
2 r — g =0 1
€ + =
L>>% d T+ re = S (ra £ 1y)
Ty Ty 3y M =0 2
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The equations of motion

" Q_
'l ——=0
T+

" =0

can be integrated from the initial envelope at s = s; to show that:
+ T_ equation solution trivial

1
+ T+ equation solution exploits Hamiltonian irf —QInry = const

Space-Charge Dominated Free-Expansion (e, = gy =0)

ro(5) = 4 (51) exp —’”’*Zgi) t et {erﬁ T\';%’] + \/?e”*ii:” %H 2

r(s) =r-(s:) + 17 (s:)(s — 1) Imaginary Error Function

ry = %(rw +7,) erfi(z) = erfg.iz) = \/2% /Ozdt exp(t?)
i=v-1

The free-space expansion solutions for emittance and space-charge dominated

beams will be explored more in the problems
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S5: Matched Envelope Solution:  Lund and Bukh, PRSTAB 7, 024801 (2004)

Neglect acceleration (-, (3, = const) or use transformed variables:

"(8) 4+ Ky (8)Tz(s) — 2Q — Z =
73 (8) + Kz (8)rz(s) r2(s) +14(s)  r3(s) 0
"(8) + ky(s)ry(s) — 2Q - ) =
Ty (8) + Ky (s)ry(s) r2(s) +1y(s)  73(s) 0
rz(s+ Lp) = 1z(s) rz(s) >0
ry(s+ Lp) = ry(s) ry(s) >0

Matching involves finding specific initial conditions for the envelope to
have the periodicity of the lattice:
Find Values of: Such That: (periodic)

(i + Lp) = 10,(85)

re(81)  Th(s) re(8i + Lp) = 12(51)
ry(si + Lp) =1y (si)

y(54) T,y(sz‘) ry(si + L) = Ty(si)

+ Typically constructed with numerical root finding from estimated/guessed values
- Can be surprisingly difficult for complicated lattices and/or strong space-charge
# Iterative technique developed to numerically calculate without root finding
[Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)]
Method exploits Courant-Snyder invariants of depressed orbits within the beam.
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Typical Matched vs Mismatched solution for FODO channel:
Matched

Matched Beam Envelope
HF—r—F—"TF—"—"TF—

Mismatched

Envelope Solution: Matched and Mismatched Beam
— T

= — T
Ty H “;4— Mi.v\"»Malchc(I Beam (Dashed) 7", |

m)

W

=]
W
o

X,Y Envelopes (mm)

X,Y Envelopes (m

20-

L
0 5 10 15

Axial Coordinate. s (m) Axial Coordinate, s (m)

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
+Matching tends to exploit optics most efficiently to maintain confinement
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Parameters
L,=0.5m, oo=280° n=0.5

£, = 50 mm-mrad

Ty (S + L;D) =Ty (3)

Ty(s + Lp) =1y (s)
Ex =&y 0/op = 0.2 Perveance Q iterated to
obtain matched solution

with this tune depression

FODO Quadrupole Focusing
(Q = 6.5614 x 10™%)

Solenoidal Focusing

(Q = 6.6986 x 10™%)

n

Edge Radu v and 7, (mm)

i
¥

|
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Symmetries of a matched beam are interpreted in terms of a local rms

equivalent KV beam and moments/projections of the KV distribution
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions]

¥LAICNEea SEarn CAVEIOpe and FocusIng Cuncron

g
E L Ty
= 10
E 8 Ty
B oo ks
R S — —
. . =0 02 | 04 ; 06 I oos L
Projection | ! Axial Coordinate (Lattice Periods) | ;
y y y ¥ ¥
X-y
x X x x X
area: T, Ty 7 const
| x x x

x-X'
area: e, = const
(CS Invariant)

1

y-y

area: T, = const
(CS Invariant)
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S6: Envelope Perturbations:

In the envelope equations take:

Envelope Perturbations:

Lund and Bukh, PRSTAB 7, 024801 (2004)

Driving Perturbations:

rz(s) = irxm(s) + érx(s)
ry(s) = Tym(s) + dry(s)

Matched ~ Mismatch
Envelope Perturbations

Ke(8) = Kz (8) + 0Ky (s)

by(5) — riy(5) + Oy (s) O
Q—Q+ 5Q(5) Perveance
€x = &o + 02a(s) Emittance
ey — €y + 0ey(s)

Perturbations in envelope radii are about a matched solution:

Tom (8 + Lp) = Tgm(s)
Tym (8 + Lp) = Tym(s)

Tam(s) >0
Tym(s) >0

Perturbations in envelope radii are small relative to matched solution and driving

terms are consistently ordered:
Tam(8) > |074(8)|

Tym(8) > |01y (s)|

Amplitudes defined in terms of
producing small envelope perturbations

# Driving perturbations and distribution errors generate/pump envelope perturbations

- Arise from many sources: focusing
SM Lund, USPAS, June 2011

errors, lost particles, emittance growth, .....
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The matched solution satisfies:
+ Add subscript m to denote matched envelope solution and distinguish from
other evolutions

Tz = Tam For matched beam envelope

Ty — Tym with periodicity of lattice
2Q e
o (8) + Ka(8)ram(s) — - = =0
(s) 2(8)Tzm(8) Tam(8) + rym(s)  72,,(5)
2 &2
Fp(5) + R (Srym(s) — =2 ‘5=

Tam (8) + rym(s) - 73(5)
Trm(s + Lp) = Titm(s)
Tym (s + Lp) = rym(s)

Tam(s) >0
Tym(s) >0

Matching is usually cast in terms of finding 4 “initial” envelope phase-space
values where the envelope solution satisfies the periodicity constraint for specified
focusing, perveance, and emittances:

racm(si) T;m(si)

Tym(Si)  7yn(si)
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Linearized Perturbed Envelope Equations:
* Neglect all terms of order §2 and higher: (67;)%, 67,67y, 6Qdry, -

2Q

0! 4 Kydry +
z z0Tg (r:cm +7'ym)2

(0rs

2Q

orl! + Ky ory +
Y vy (sz + Tym)2

(Org

3e2
+6ry) + —50r
sz
2 2e
= —Twm(SHz + 76@ + B_I(Sgw
Tam + Tym Tom
3e2
+ory) + 4—y67‘y
Tym
2 2¢e
= —TymOky + 6Q + 2o
Y rom  Tym o

Homogeneous Equations:

+ Linearized envelope equations with driving terms set to zero

2Q
or! + Kkpory +
v 0T (Tzm + Tym)
2Q

or!" + Ky, or, +
Y vy (rwm+rym)

3 2
5 (075 + 0ry) + %6% =0
T'l'm
2

3e
5 (07% + 0ry) + 7q4—y6ry =0

ym

SM Lund, USPAS, June 2011
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Martix Form of the Linearized Perturbed Envelope Equations:

d
—0R+ K- 0R =P
ds
Ory
R = g’"; Coordinate vector
Ty
ory, Coefficient matrix Has periodicity
0 -1 0 0 Kom = 2Q of the lattice period
| kam O kom O (rem + Tym)?
K=
0 0 0 -1 2
kom 0 kym O kjm = Kj + 34—] + kom ji=z, v
Tim
0
— 0Ky Tem + 2% + 2%
0P = 0 o Driving perturbation vector

—Okyrym +2—9 4 9sudey

Tom+Tym Tym

Expand solution into homogeneous and particular parts:

SR = 6R, + 0R, 0R}, = homogeneous solution
0R, = particular solution

d d
— . = —0R, + K- 0R, = /P
I R, +K-0R;, =0 a5 + P
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Homogeneous Solution: Normal Modes

# Describes normal mode oscillations

+ Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

* Describes action of driving terms

# Characterize in terms of projections on homogeneous response (on normal modes)

Homogeneous solution expressible as a map:
OR(s) = Mc(s|si) - 0R(s;)
OR(s) = (074, 0rYy, 01y, 0T

M, (s|s;) = 4 x 4 transfer map

Now 4x4 system, but analogous to the
2x2 analysis of Hill's equation via
transfer matrices: see S.M. Lund
lectures on Transverse Particle Dynamics

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(si + Lp|3i) . En(sz) = /\nEn(Sz)

Mode Expansion/Launching

Stability

1
0, — mode phase advance (real) SR(s:) = E
An = Yne'on (si) Z Qn

Yn — mode growth/damp factor (real)

oy, = const (complex)

SM Lund, USPAS, June 2011 Transverse Centroid and Envelope Descriptions of Beam Evolution 49

Eigenvalue/Eigenvector Symmetry Classes:

a) Stable

o b) Unstable, Confluent
Eigenvalues Eigenvectors ) Unstable, Revanaont EGigenvalues Eigenvectors
1 N ic
= 1
A eio E A =vie B
2 . o
hy=e . I Ay = 1/ = (1/7)e ! 7;2
-is
[ oy L
>, L = =hree B=F Ay = 10 = (/1 e LI NN
—ic. —io,
. 2 * _ _ 1 -, .
RNV Wy W By= B My = At =ge By =B
©) Umldble-&dmce [ Ei d) Unstable, Double Lattice
o esoRBNG2 igenvalues igenvectors conance Eigenvalues Eigenvectors
n ic R Im2,
Azt E‘ m A A in 3
1 - Ay =1pe Ly (real)
in . i
Ay = 1,€ o Iy (real) A = 1" Iy (real)
i —ioy ® < .
Ay=hree By =F T Ren, A= 1A = /e By (real)
- - in 9 g
Ay = 1% = (1/7y)¢ By (real) \\\ // Ay = 10y = (/7™ By (real)

Symmetry classes of eigenvalues/eigenvectors:
+ Determine normal mode symmetries
+ Hamiltonian dynamics allow only 4 distinct classes of eigenvalue symmetries
- See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)
+ Envelope mode symmetries discussed fully in PRSTAB review
+ Caution: Textbook by Reiser makes errors in quadrupole mode symmetries and
mislabels/identifies dispersion characteristics and branch choices
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Pure mode launching conditions:
Launching conditions for distinct normal modes corresponding to the
eigenvalue classes illustrated:

A, = mode amplitude (real) ¢ = mode index

1 = mode launch phase (real) C.C. = complex conjugate

Case Mode Launching Condition | Lattice Period Advance
(a) Stable 1- Stable Osc.  [0R; = A1e"E; + C.C. M.0R1(¥1) = 0R1(¢1 + 01)

2 - Stable Osc. 0Ry = Age™?Ey + C.C. | ML6Ry(12) = 6Ro (12 + )
(b) Unstable |1 - Exp. Growth |dR; = A;eV'E; + C.C.| Mc0R1()1) = 710R (Y1 + 01)
Confluent Res. | 2 - Exp. Damping | §Ry = Ase™¥?Ey + C.C.| M.0Ro(12) = (1/71)0Ra(2 + 01)
(c) Unstable | 1- Stable Osc. | 6R; = A1e1E; + C.C. MRy (1) = 6R1(¢; + o)
Lattice Res. |2 - Exp. Growth |6Ry = AyE, MRy = —720Rs

3 - Exp. Damping | 6R3 = A3E, M_.0R3 = —(1/72)0R3
(d) Unstable |1- Exp. Growth |éR;=AE; MR = —710Ry
Double Lattice |2 - Exp. Growth |0Ry = AsEs MRy = —120Rs

Resonance 3 - Exp. Damping | {R3 = A3E;
4 - Exp. Damping | 0R4 = A4Eq M.0R4 = —(1/72)0Ry

0R; =06Re(si) Er=Ei(s;)) Me=Me(s;+ Lpls;)

AL[Eq(s)e™1(®) £ Bt (s)e 1(9)] + Ay[Ea(s)ei2(5) + Bi(s)e~¥2(9)],  cases (a) and (b)
OR(s) = { A1[Eq1(s)e1 () + Ef(s)e 1)) + A,Eq(s) + A3E4(s), case (c)
AlEl(s) + AsEs(s) + AzEs(s) + AsE4(s), case (d)
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Decoupled Modes

In a continuous or periodic solenoidal focusing channel
Fia(s) = iy (5) = A(s)
with a round matched-beam solution
€x = &y = € = const
Tam(8) = rym(S) = rm(S)
envelope perturbations are simply decoupled with:

ory + or
Breathing Mode: ory = %
Quadrupole Mode: Sr_ = OTa g ory
The resulting decoupled envelope equations are:
Breathing Mode: ,
3 0Kz + 0 0y + 6
5Ti+ﬁ5r++%5r++%6r+:—rm(%) —5Q ( 3 -;— €y>
Quadrupole Mode:
" 3e? 0Ky — (Sliy 2e [ de, — 6€y
or’" + kor_ + —0r_ = —rp | ———= | + —
T 2 3, 2
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Graphical interpretation of mode symmetries:

Breathing Mode: y Breathing Mode (+)
Envelope
Quadrupole Mode (-) y P
_ 6T17 + 6’[“y Envelope ~ _———" A Y - .
(57"+ = — = - Sr=5 Breathing
2 \,\ ,,,,,,,,,,,,,,,, I O N ry— "x Mode +)
\ - _ Quadrupole
r e O ok )
m
Quadrupole Mode:
5r — 01y — 0y x
2
Matched Beam B e
Envelope 'm i er |
Quadrupole and

Breathing Modes
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for dr,(s)
+ Indirectly present in both equations from matched envelope r,,(s)

Homogeneous Solution:
+ Restoring term for dr,(s) larger than for dr (s)
- Breathing mode should oscillate faster than the quadrupole mode

Particular Solution:
+ Misbalances in focusing and emittance driving terms
can project onto either mode
- nonzero perturbed k(s) + K,(s) and g,(s) + £/s)
project onto breathing mode
- nonzero perturbed k(s) - K,(s) and g,(s) - £,(s)
project onto quadrupole mode
+ Perveance driving perturbations project only on breathing mode

SM Lund, USPAS, June 2011 Transverse Centroid and Envelope Descriptions of Beam Evolution 54

Previous symmetry classes greatly reduce for decoupled modes:
Previous homogeneous 4x4 solution map:
O0R(s) = Mc(sl|s;) - 0R(s;)
OR(s) = (01, 01y, 01y, 077
M.(s|s;) = 4 x 4 transfer map

reduces to two independent 2x2 maps with greatly simplified symmetries:

R = (0ry,0r!,6r_,or_)

M. (si + Lysi) 0

Me(si + Lylsi) = 0 M_(s; + Lp|si)

with corresponding eigenvalue problems:

Mi(si + Lp|8¢) . En(sz) = )\iEn(si)

Many familiar results from analysis of Hills equation (see: S.M. Lund lectures on
Transverse Particle Dynamics) can be immediately applied to the decoupled case,

for example: )
3 |Tr My (s; + Lp|s;)| <1 <=  mode stability
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Eigenvalue symmetries and launching conditions simplify for decoupled modes
Eigenvalue Symmetry 1:

Stable
ImA, A . i,
+ ¢ Launching
/o N Condition / Projections
Py y Breathing Mode (+)
y Re * X Quadrupole Mode (-) ,E"VCIOPC
4 _lGi Envelope _— ==y S Breathing
A F= 1y =e \ Bry= B pioge )
\ - Quadrupole
Sr,=-dr
. \ ¥y XMode (-)
Eigenvalue Symmetry 2: fm [y e T )
Unstable, Lattice Resonance ] I
Ima,
—in s i
hy =g e / 3
Matched Beam I
7\,_!_ 1/7\.t Envelope 'm Sry

Quadrupole and

1 7\% Breathing Modes
Mo, =0T
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General Mode Limits

Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limit:

lim oy = 2
Q—0 ot 90

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with k, = Ky, €, = ¢y

5 2
[ Ti(s)} + [y (8)0r+(s) — w4 (s)0r(s)]? = const
wx(s)
where Q 2
” € 1
=~ o= —_ =0
wy + Kwy + Tfnw+ + Py wy wi
2 1
wﬁ-{—ﬁw,—}—Tw,——S:O
T w?

m
wx(s+ Lp) = wx(s)
Analogous results for coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]
+ More complex expression due to coupling
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S7: Envelope Modes in Continuous Focusing
Lund and Bukh, PRSTAB 7, 024801 (2004)

. 2
Focusing: Ka(s) = ky(s) = k3 = (%) = const
P

Matched beam: €g = €y = € = const
symmetric beam: Tem(8) = Tym(s) = r,, = const
matched envelope: k2 roo— Q _ i =0
-

depressed phase advance:

one parameter needed for scaled solution: k2 82 2 92 2
B0 0p¢ (0/00)
Decoupled Modes: = =
P Q* QL2 [1—(0/00)P
dra(s) = orz(s) :;: dry(s)
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Envelope equations of motion become:

o d* [ or 5 [ Or ol [ 6k oK . 0Q de de

2 47 (074 2 (Or+) _ 90 (Oha , Oy 2,209 | 2 (0% , 0%
L”d32<7"m>+0+<rm> 2<k§0+k§0>+(00 U)Q+0<E + 5)

d* (ér_ or— o3 [0k Ok dep  Oc

2 4 [0r— 2 (0= _ 90 (Oha 0Ky 2 (% 0%y

Lpd52<rm)+"*(rm> 2 (/fgo k§0>+0 (e £>
o4 =1/208 +20% “breathing” mode phase advance

o_ =\/o3 + 302 “quadrupole” mode phase advance

Homogeneous equations for normal modes:

d2 o\ 2 See also lectures by
E(sri + <L—i> ory =0 J.J. Barnard, Envelope Modes and Halo
P

+ Simple harmonic oscillator equation
Homogeneous Solution (normal modes):
s —8; orl(s;) S —8;
or4(s) = dr+(s;) cos (O’i ) + ———~sin(o4+
®) (50 Ly o /Ly Ly

dry(s;), O0rli(s;) mode initial conditions
SM Lund, USPAS, June 2011
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Properties of continuous focusing homogeneous solution: Normal Modes

Mode Phase Advances Mode Projections
8 y Breathing Mode (+)
£ 2.0 Quadrupole Mode (- Envelope
5 Bnvelope _——= ¢ s, reaing
f 1 8 VrJfWrX Mode (+)
i:g Breathing Mode 3 ——erﬁi‘g?f;’lc
£ 16 G, /0 R s
9 i i
=}
S 1.4 x
= c./0p
g 1.2 Quadrupole Mode
= /
g 1 % Matched Beam | » o
5 .0 02 04 06 08 1.0 Envelope o O
z Quadrupole and
6/60 Breathing Modes
. O0ry + o7
o4 =\/20¢ + 202 Breathing Mode: or, = Ty
_ /2 Ory — Or
o_ =\/o% + 302 Quadrupole Mode: §p_ = —% ¥ 5 Y
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Particular Solution (driving perturbations):
Green's function form of solution derived using projections onto normal modes
# See proof that this is a valid solution is given in Appendix A

) [ Gt e
MM@w=J§[ﬁ2§+JE§’+4ﬁ_aq“gﬁ+g [0l S5t
Sp_(s) = %g [5%5)5) _ 5?@18)} 2 [551(5) - asyg(s)]

Gi(s.9) = orpsin (02

Green's function solution is fully general. Insight gained from simplified solutions for

specific classes of driving perturbations:
+ Adiabatic
+ Sudden
+ Ramped
+ Harmonic

covered in these lectures

covered in PRSTAB Review article

Continuous Focusing — adiabatic particular solution

For driving perturbations 9+ (s) and dp—(s) slow on quadrupole mode (slower
mode) wavelength ~ 27L,/o_ the Green function solution reduces to:

&Jr—(s) = &mr—?(S) Focusing Perveance
T'm o5
[t 1 1 [ dka(s) N Skiy(s) N 11— (0/00)*] 3Q(s)
(214 (a/00)?] 2\ K%, k2, 21+ (0/00)2| Q
N (0/d0)? 1 (des(s) N dey(s) 7
14 (0/00)?] 2 € €
5r_(s) 5p_(s) Emittance Coefficients of adiabatic
*m = po Focusing terms in square brackets“[ ]”

{ } 1 (0ks(s)  dry(s)
1+ 3((7/(70 k%o k,(230

+ [T o) 3 (T2 - )

~ ——— Emittance
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Derivation of Adiabatic Solution: Comments on Adiabatic Solution:
+ Several ways to derive, show more “mechanical” procedure here .... + Adiabatic response is essentially a slow adaptation in the matched envelope to
Use: perturbations (solution does not oscillate due to slow changes)
+ Slow envelope frequency o_ sets the scale for slow variations required
ory(s) 1 [°
= — [ d3GL(s,3)p+(3) o
m L/, Replacements in adiabatically adapted match:
- 1 -3 1 d s—3§ —
Gi(s,8) = 7L sin (Ui 17 > = (02/L )2d~COS (O’i T ) g = Tm = Tm + 0Ty + 07
o o 5
+/p 4 /&P 4 Ty = T — T + 07— — 01y
Gives
. . Parameter replacements in rematched beam (no longer axisymmetric):
or+(s) Adiabatic ; 0

o s—3) ope(3) s s—3\ d 5pe(3)
_/Sld ﬁ[cos(ai Lp) - —/Sids cos | o I T Tos

No Initial Perturbation
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0
Cos (0i5_3i> op (i)
L, o

63

o = k3o — k3o + 0kia(s)

Ky = k3o — ko + dky(s)
Q= Q+0Q(s)

Erx =€ — £+ 0e5(8)

)

ey =€ — e+ 0ey(s
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Continuous Focusing — adiabatic solution coefficients
a) &r, = (r, + &r,)/2 Breathing Mode Projection

2}

=05 .

§ e Relative strength of:

£ 0.4}

D 5

Sos ;_: i::::)) P * Spac.e-Charge gPerveance)
& + Applied Focusing

é 02 FlocuslnlgTerm& E:;;t:me > Emittance

Q 01}z +(6/60)% \ (670> .

k| o T+ @R terms vary with space-charge
< . .

g 00 02 04 06 08 10 depression (o/0) for both

G /oy

breathing and quadrupole
&r. = (8r,- 8r,)/2  Quadrupole Mode Projection

mode projections

Emittance Terms:
(6/6)?

5N
1+(6/0)" N\

7 R

c o =
®» o O

Plots allow one to read off the
0.4 |Ferusng rerms relative importance of various
i+ (@rog? contributions to beam
mismatch as a function of
space-charge strength

7,

o
N

0.

0 02 04 08 08 1.0
G /0

Adiabatic Solution Coefficients <
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Continuous Focusing — sudden particular solution

For sudden, step function driving perturbations of form:

Hat quantities
are constant
amplitudes

_axial coordinate

op+(s) = 0p+O(s — sp) 5=%= perturbation applied

with amplitudes:

— o2l 5Q der | Oy
o= %0 x y 2 2\% 2 (22, TRy | st
P+ 2[k§o+kzo L S P e
— 2 P Ok Sca e,

B0 B0

The solution is given by the substitution in the expression for the adiabatic solution:
+ Manipulate Green's function solution to show (similar to Adiabatic case steps)

Gps(6) = |1 cos (0212 ) [ €5 -3

P
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Sudden perturbation solution, substitute in pervious adiabatic expressions:

5p(5) — Bps [1 — cos (ais;%)] O(s - )

P

Tlustration of solution properties for a sudden dp () perturbation term

s
& . .
K 2x Adiabatic
"; i (Max Ecursion)
2
E A
g . .
D | Adiabatic , [\ |/ \ | Adiabatic
2 4 Excursion
[}
g A
m i
' ‘
¢ R
s=Sp 2nL o,

Axial Coordinate, s

For the same amplitude of total driving perturbations, sudden perturbations result in 2x the
envelope excursion that adiabatic perturbations produce
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Continuous Focusing — Driven perturbations on a continuously
focused matched equilibrium (summary)

Adiabatic Perturbations:
+ Essentially a rematch of equilibrium beam if the change is slow relative to
quadrupole envelope mode oscillations

Sudden Perturbations:
+ Projects onto breathing and quadrupole envelope modes with 2x adiabatic
amplitude oscillating from zero to max amplitude

Ramped Perturbations: (see PRSTAB article; based on Green's function)
+ Can be viewed as a superposition between the adiabatic and sudden form
perturbations

Harmonic Perturbations: (see PRSTAB article; based on Green's function)
+ Can build very general cases of driven perturbations by linear superposition
+ Results may be less “intuitive” (expressed in complex form)

Cases covered in class illustrate a range of common behavior and help build
intuition on what can drive envelope oscillations and the relative importance of
various terms as a function of space-charge strength
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Appendix A: Particular Solution for Driven Envelope Modes
Lund and Bukh, PRSTAB 7, 024801 (2004)

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

2" + k(s)z = p(s)

The corresponding homogeneous equation:

2" +k(s)z=0

has principal solutions

2(s) = C1C(s) + CoS(s)

where

Cy, O = constants

Cosine-Like Solution
C"+k(s)C=0
C(s=s;)=1 S(s=s;)=0
C'(s=s;)=0 S'(s=3s;)=1
Recall that the homogeneous solutions have the Wronskian symmetry:
# See S.M. Lund lectures on Transverse Dynamics, S5C

W(s) =C(s)8'(s) = C'(s)S(s) =1
SM Lund, USPAS, June 2011

Sine-Like Solution

S§"+k(s)8=0
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

z(s) = /sdé G(s,8)p(3)

i

G(s,5) = S(s)C(3) — C(s)S(3)

Demonstrate this works by first taking derivatives:

z=38(s) /Sdé C(3)p(3) — C(s) /sdé S(35)p(3)
' =8(s) /sdé C(3)p(3) — C'(s) /sd§ S(3)p(3)
Si 0 Si
+2(9) (ST = SC(s)]
=5'(s) / 45 CER) ~ C'(s) / d5 S(3)p(3)

i Si

2’ =8"(s) / s C(3)p(3) — C"(s) / ‘Sdé S(3)p(3)

Si

1
+ p(s) [3’(8)(%4— C'(s)S(s)] Wronskian Symmetry
“b(s) + S(s) [ 5 ~ €(5) [ d5 SEl)
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Apply these results in the Driven Hill's Equation:
Definition of Principal Orbit Functions

2" + k(s)x = p(s) + [S”/\/Hg] /:dg C(%)p(s) — [C'%{C?/deé S(3)p(3)

= p(s)

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:

+ Choose constants C1, Cs consistent with particle initial conditions at s = s;

os) = 2(sC06) + (5)8(6) + [ 45 Gl 3)0(6)
G(s,3) = S(s)C(3) — C(5)S(3)

Apply these results to the driven perturbed envelope equation:

2

d ol Tm
@67"& + L—%(ST:{: = L_%(Sp:t
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The homogeneous equations can be solved exactly for continuous focusing:

C@)=(0s<ai8;8i>

P

L —si
S(s) = é sin (ais L: >
and the Green's function can be simplified as:
G(s,8) = 8(s)C(8) — C(s)S(3)

L, (. s — 8; 5—5; s—58;\ . 5—5;
= —<sin| o cos | o —cos | o sin [ o
o =7, I, 7L, 7L,
L, in s—3§
=—sgin|o
ot * L,

Using these results the particular solution for the driven perturbed envelope
equation can be expressed as:
+ Here we rescale the Green's function to put in the form given in S8

ore(s) 1 [ 5 3

== L—% /S ds G+(s,5)0p+(3)

G (sg)—#sin _3—5
+\5, _O':t/Lp T+ Lp
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S8: Envelope Modes in Periodic Focusing Channels
Lund and Bukh, PRSTAB 7, 024801 (2004)
Overview
+Much more complicated than continuous focusing results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
+Instability bands calculated will exclude wide ranges of parameter space from

machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
+Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of normal mode characteristics
- Driven modes not considered but should be mostly analogous to CF case
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
- Carried out for piecewise constant lattices for simplicity (fringe changes little)
+More information on results presented can be found in the PRSTAB review

SM Lund, USPAS, June 2011 Transverse Centroid and Envelope Descriptions of Beam Evolution 73

Solenoidal Focusing — Matched Envelope Solution

a) 6y = 80°andm = 0.75  High Occupancy Focusing:

?g; o0y =03 g ke () = ky(s) = k(s)
zi 0:5 h k(s + Lp) = k(s)
;é 04 | o« L Matched Beam:
e
gz = &y = € = const

00 02 04 ‘ 06 08 1.0
Axial Coordinate, s/L,, Tem (8) = 'l“ym(S) =Tm (8)

b) 6p=80°andn = 025 Low Occupancy
Tm(S + Lp) = TM(S)

S 0.7 (Mid Lens and Mid Drift
oloy=0.5 ;
= Comments:
= + Envelope flutter a strong
= function of occupancy 7
L2 + Space-charge expands envelope

1.0 but does not strongly modify
periodic flutter

00 02 04 06 08

Axial Coordinate, s/L,,
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Envelope Flutter Scaling of Matched Envelope Solution

Add material explaining scaling better in future editions
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase

advance by solving:
+ See: S.M. Lund, lectures on Transverse Particle Dynamics
+ Particle phase-advance is measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

- kL
cosog = cos(20) — 177—17@ sin(20) ) \/EQ 4

Y

T4/ d=(1—-n)L,
£ =nLy,
1 € (0,1] = Occupancy
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Lattice Period

SM Lund, USPAS, June 2011




Solenoidal Focusing — parametric plots of breathing and quadrupole envelope
mode phase advances two values of undepressed phase advance
a) n=0.25, 65=80° b) =025, 65=115°

+: Stable +: Stable +: Lattice Resonance
—: Stable —: Stable —: Stable
i AR
- L/ _ N
k: , = . .
‘g 160 : = 220| O, icont Foc.|
K G, Cont.Foc. | B, | (dashed) |
By 140} (dashed overlaid) | 150 ! _
L7
= 120 - T L
z g = G_Cont. Fac
b 100 | G_Cont Foc. Z 140 e
%0 | (dshed averlaid) . i
g ' 8 100l '
i 00 02 04 06 08 10 E 00 02 04 06 08 10
G /Gy G /o,
5 R R R =
] 1 7] i H
£, Tot N T~
s 7 ‘ s : '
g 0.6 g 06| | U
00 02 04 06 08 10 00 02 04 06 08 10
G/0p G /0y

v
—@’}L_
Ly
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Solenoidal Focusing — mode instability bands become wider and stronger for
smaller occupancy

0.75 (Blue) .
N =3 025 (Green) oo =115

0.10 (Red)
=)
2 220 Comments:
g, + Mode phase advance in
Eﬁ 180 instability band 180 degrees
Z per lattice period
_é 140 + Significant deviations from
< continuous model even outside
% 100 the band of instability when
= 00 02 04 06 08 1.0 space-charge is strong
~ () /60 + Instability band becomes

stronger/broader for low
§ 14 Y. Band Y. Band occupancy and
3 — weaker/narrower for high
: 1.0% occupancy
2 06 - Disappears at full occupancy
l% ’ (continuous limit)
00 02 04 06 08 1.0

(5/00
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Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation

n=20.75 n =0.25

0 Breathing and Quadrupole Mode Growth Factors, v, and y_
- 1.0

B T
1“|Yi | 0.5 ! ln‘\/i |
¥= 0.0 .
0.6 Lattice Res. D06
A o
\
© 04 O 04 -
T+ Lattice
02| Lattice 02 Res. !
Res. Band Band !
: 0.0 ‘
100 120 140 160 180 100 120 140 160 180

G (deg/period) O (deg/period)
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Solenoidal Focusing — parametric mode properties of band oscillations

a)n=0.75 b)n=0.25
Breathing Mode Phase Advance, 6,
1.0 : 1.0
\ g ‘ NE
/M [=9]
0.8 P 038 3
g 2
=} =]
0.6 Z 06 %
g £ e <
© 04 2 bLos 2
3 3
02 02
0.0 0.0
0730 60 90 120 150 180 0730 60 90 120 150 180
G (deg/period) O (deg/period)
Quadrupole Mode Phase Advance, 6_
1.0 NE 1.0 ‘ NIE
m m
038 g 0.8 @
06 g 0.6 z
€ 3 S
© 04 3" 0.4 %
02 0.2
00 0.0
0 30 60 9 120 150 180 0 30 60 90 120 150 180
G (deg/period) O (deg/period)
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Parametric scaling of the boundary of the region of instability
Solenoid instability bands identified as a Lattice Resonance Instability
corresponding to a 1/2-integer parametric resonance between the mode oscillation
frequency and the lattice

Estimate normal mode frequencies for weak focusing from continuous
focusing theory:

o4 =~ /202 + 202
o_ ~\/ok + 302

This gives (measure phase advance in degrees):

Breathing Band:
o4+ = 180°

= /203 + 202 =180° ==

# Predictions poor due to inaccurate mode frequency estimates
- Predictions nearer to left edge of band rather than center (expect resonance strongest at center)
+ Simple resonance condition cannot predict width of band
- Important to characterize width to avoid instability in machine designs
- Width of band should vary strongly with solenoid occupancy 7
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Quadrupole Band:
o_ = 180°

o + 302 = 180°

To provide a practical guide on the location/width of the breathing and quadrupole
envelope bands, many parametric runs were made and the instability band
boundaries were quantified through curve fitting:

o
¥

Left

1.0
(=]
S
08 1
. Quadrupole
=}
2 06 ]
@0 Right
3 .
o Breathing
7, 04 1
<o Left
A Right
o ]
5
E

o
=)

30 60 90 120 150 180
Phase Advance, o [Degrees]

Breathing Band Boundaries: Quadrupole Band Boundaries:
. L e oS . [o1)
02+f05:(90 )2(1+f) Left: U/UO+990021+9
f=floo,n) =
{l.lli} —0.413n + 0.003480¢, left-edge

(=]

Right: 0 + goo = 90°(1 + g)

s left-edge
0.227 — 0.173n, right-edge
maximum errors ~5 /~2 degrees on left/right boundaries

maximum errors ~8/~3 degrees on left/right boundaries
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1.046 + 0.318n — 0.0041000, right-edge g=gn) =

# Breathing band:
# Quadrupole band:
SM Lund, USPAS, June 2011

Pure eigenmode launching conditions are simple for the ideal solenoid case and
correspond to the breathing (+) and quadrupole (-) mode symmetries covered for
decoupoled modes in S6

Breathing Mode: y Breathing Mode (+)
Envelope
Quadrupole Mode (-) y P
_ 6’[“1; + 6’[“y Envelope ~ _———=" / """"""""" - .
(5r+ = —= - Sr=5 Breathing
2 \,\ ,,,,,,,,,,,,,,,, I R N A ry— X Mode (+)
\ _ Quadrupole
r o\ eode o)
m
Quadrupole Mode:
5 — 01y — Iy x
2
Matched Beam I > -
Envelope I'm i er |
Quadrupole and
Caution: Breathing Modes

Recall we are describing problem implicitly in the rotating (Larmor) frame and to
express launch conditions in the lab frame quadrupole mode conditions must be

projected back with the correct overall rotation through magnet fringe fields
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Quadrupole Doublet Focusing — Matched Envelope Solution
FODO and Syncopated Lattices

a) 6,=80%n=0.6949,and =12 FODO Focusing:

1.0 (Mid Drifts) | (Wid Lonses) K/@(S) = —K (8) = Iﬁl(S)
> olog=0.5 [ y'" Ve ,.J;“,_“‘ Yy
508 K(s + L) = A(s)
f: 0.6 Matched Beam:
g 04 €y =&y = € = const
z

Tem (8 + Lp) = ram(s)

00 02 04 06 0§ 10
xial Coordinate, /L, rym(s + Lp) — Tym(s)

b) 0,=80°,1=06949, ande=0.1 Syncopated

Comments:

10 (Mid Drifts) :
3 /5y =0.5 =1, + Envelope flutter a weak function
@: 08 of occupancy 77
S 06K + Syncopation factors o 7% 1/2
j b reduce envelope symmetry and
3 04 can drive more instabilities

. . )
00 02 04 08 05 10 Space-charge expands envelope
Axial Coordinate, s/Lp
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Envelope Flutter Scaling of Matched Envelope Solution

For FODO quadrupole transport, plot relative matched beam envelope excursions
for a fixed form focusing lattice and fixed beam perveance as the strength of
applied focusing strength increases as measured by g

FODO Quadrupole Ly gg
1.4 ' ' ' ' Ez/ 7 7(s)
. I
1.2 n=05 L,=0.5m
— —4
1.0 Q=5x%x10
€z = €y = 50 mm-mrad
0.8
o/og
06 45| 0.20
00 02 04 06 08 10 80" 0.26
110°| 0.32

Lattice Period, s/L,
+ Larger matched envelope “flutter” corresponds to larger oo
- More flutter results in higher prospects for instability due to transfer of energy
from applied focusing
+ Little dependence of flutter on quadrupole occupancy
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

Quadrupole Doublet Focusing - piecewise constant focusing lattice

1—
cosog = cos © cosh © + —ne(cos © sinh © — sin © cosh O©) _
n 0= |R|Lp
_ 2 =
—2a(1 —cv)%@2 sin © sinh © 2
K( )‘k (x )
s =
¥ X =Ky o
dy \nLy2, & n € (0,1]  Occupancy
F Quad o
D Quad '5
NL,/2
R a €]0,1/2] Syncopation
L, dy= a(l-n)L,, Factor
Lattice Period dy = (1-a)(1-n)L, a=1/2—FODO
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Quadrupole Focusing — parametric plots of breathing and quadrupole

envelope mode phase advances two values of undepressed phase advance
a) N=0.6949, o= 0.1, 65=280° b) N=0.6949, a=0.1, 6= 115°

Syncopated
B: Stable B:Lat. Res. B. Conf. Res. B: Stable
FODO Q: Stable Q: Stable 5 Conf. Res. Q: Stable
= =)
£ 160 I = A By
2 G, ContFoc. | Oz k=)  dashed)
= 140 (dashed) &b 200 ! 7
2 120 S = e
> i 2 160F . :
3 100 A g . ‘
< ! G,(%g;«l:ég?c. i " "2-" 1 5. Cont. Foc.
g 80 3 Z120p o (dashed)
£ 00 02 04 06 08 L0 £ 00 02 04 06 08 10
G/0y G/6g
‘ = Y5 ¥p Band| :
g 14 ' No Instability. S 14]B% ‘(("(%?;"Y.%W e
E : 9 ) | |
o5 10 AP £ 10 A\\\mﬂfz
g ! £ L w : b
= i =3 / 1Yz Band ™ !
° 0.6 ! < 0.6 ‘(r(y‘fmrk‘:\\ U Uy
o 00 02 04 06 08 10 o 0.0'/ 02 04 06 08 10
c/og G/og
: 4]
/T_“.’_\
175
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Important point:
For quadrupole focusing the normal mode coordinates are NOT
Sy £ 0ry d0ry & Breathing Mode

ory = -5 or— < Quadrupole Mode

+ Only works for axisymmetric focusing (Fix = ky = Fi)
with an axisymmetric matched beam (e = Ey = €)

However, for low oy we will find that the two stable modes correspond closely in
frequency with continuous focusing model breathing and quadrupole modes even
though they have different symmetry properties in terms of normal mode
coordinates. Due to this, we denote:

Subscript B <==
Subscript Q

Breathing Mode
<==> Quadrupole Mode

+ Label branches breathing and quadrupole in terms of low 0 branch frequencies
corresponding to breathing and quadrupole frequencies from continuous theory

+ Continue label to larger values of 0g where frequency correspondence with
continuous modes breaks down
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices
b) a=0.1, og=115°

a) oo=1/2 (FODO), cp=115°
FODO 0.9

0.25

0

5

0.1

0

220
Op
180
140

100

180°

Phase Adv. (deg/period)

1.4
1.0

0.6

Growth Factor

00 02 04 06 08
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(Blue)

0.6949 (Black)

(Green)

(Red)

Phase Adv. (deg/period)

Growth Factor

220

100

Syncopated

180 foov

140
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Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine
operation
FODO Lattice Syncopated Lattice
n=0.6949, a=1/2 n =0.6949, a=0.1

§ Breathing and Quadrupole Mode Growth Factors, ¥ and ¥,
1.0

ln|yB_ Q| 1.0 ! In|yg Q‘ 1.0
0.8 0.8 : E
Y5, Yo 0.0
6:)0'6 bc) 0.6 onﬂulgghcl'{es.
~ ~ Y,
© o4 © 04 5
Lattice
02 0.2 Res.
Band
0.0 0.0 "
100 120 140_ 160 180 100 120 140 160 180
O (deg/period) O (deg/period)
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Quadrupole Focusing — parametric mode properties of band oscillations
a) 1 =0.6949, o.=1/2 FODO b)n =0.6949, o = 0.1 Syncopated

Breathing Mode Phase Advance, G
1.0 o 1.
\\\ g N
A @
038 8 038 8
< ==
0.6 g <06 28
. = % L,
o 190° g L =g
© 04 E o4 5 g
2000 | 2 <2
02 g 02 ce
X g X p
£
0.0 0.0 I 3
0 30 60 90 120 150 180 0 30 60 9 120 150 180
Gy (deg/period) 6 (degfperiod)
Quadrupole Mode Phase Advance, Oo
1.0 = 1. =
m m
08 p 038 B
06 Z 0.6 z32
L TONLrE R 2y
© 04 - gE bLos4 Bl
1600 | = £3
=
02 J S 02 Sk
| 8
b=
0.0 0.0 8

0 30 60 90 120 150 180

Gy (deg/period)
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% 6 %
G (deg/period)
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Parametric scaling of the boundary of the region of instability

Quadrupole instability bands identified:
+ Confluent Band: 1/2-integer parametric resonance between both breathing and
quadrupole modes and the lattice
+ Lattice Resonance Band (Syncopated lattice only): 1/2-integer parametric
resonance between one envelope mode and the lattice

Estimate mode frequencies for weak focusing from continuous focusing theory:

op =04 =1/2028 + 202
og=0_=1/0¢+ 302

This gives (measure phase advance in degrees):
Confluent Band:

(04 +0_)/2 =180°

Lattice Resonance Band:
o4 = 180°
202 + 202 = 180°

— (/203 +20% +/03 +302 =360° =
# Predictions poor due to inaccurate mode frequency estimates from continuous model
- Predictions nearer to edge of band rather than center (expect resonance strongest at center)

+ Cannot predict width of band
- Important to characterize to avoid instability
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To provide a rough guide on the location/width of the important FODO confluent
instability band, many parametric runs were made and the instability region

boundary was quantified through curve fitting:
1.0 . .

osl Right Edge ]

0.6

04r Left Edge

0.2F

0 30 60 90 120 150 180
Phase Advance, o¢ [Degrees]

Right Edge Boundary:
o+ g(n)oo = 90°[1 + g(n)]

Tunc Depression, o/og

0.0

Left Edge Boundary:

o + f(n)og = (90°)*[1 + f(n)]
ﬂm=§

# Negligible variation in quadrupole occupancy 7 is observed
+ Formulas have a maximum error ~5 and ~2 degrees on left and right boundaries
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g(n) = é

Pure mode launching conditions for quadrupole focusing

Launching a pure breathing (B) or quadrupole (Q) mode in alternating gradient
quadrupole focusing requires specific projections that generally require an
eigenvalue/eigenvector analysis of symmetries to carry out

+ See eignenvalue symmetries given in S6

Show example launch conditions for:

FODO Lattice n = 0.6949
op = 80°
/oo =0.2
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Quadrupole Focusing — projections of perturbations on pure modes varies
strongly with mode phase and the location in the lattice (FODO example)
Breathing Mode, Mid—Quadrupole Quadrupole Mode, Mid—Quadrupole
0.10

—

010

@ 0.05

Radii, 8r;/[./20 L]
)
[
uh

< 000} 0.00
;:‘1
w -
& ~0.05 ~0.05
'?;
~0.10 -0.10
ATLT 05 0 05 1 -1 —05 _0_ 05 1
Yp/n Yo/m
o 020 o 0.20
@ a or,
~ 010 ~7 0.10 s
S 53 ’ .
~0.00k *0.00K . >
g 4 — :
=0 -0.10 & ~0.10 or,
2 Z
-0.20 -0.20
-1 -05 _0_ 05 1 -1 05 _o0,_ 05 1
0rg # 0Ty 0ry # —0ry

generally not exact generally not exact
breathing symmetry quadrupole symmetry
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Breathing Mode, Mid—Drift Quadrupole Mode, Mid—Drift

._]b_ 0.10 ._]b_
@ 0.05 @
<. 0.00 =
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z <
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Yg/n Yol/m
0Ty # 0Ty Ory # —0ry

generally not exact
quadrupole symmetry

generally not exact
breathing symmetry
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As a further guide in pure mode launching, summarize FODO results for:
+ Mid-axial x-focusing quadrupole with the additional choice 67“; =0
+ Specify ratio of 7, /dr, to launch pure mode
+ Plot as function of 00 for 0o < 90°
- Results vary little with occupancy 7 or /0o

090  (Bluc)

1 = | 06949 (Black)
025  (Green)
010  (Red)

Breathing Mode, 6/6,=02 Breathing Mode, ¢/cp=0.5

% 3.0 % 3.0
25 Bry 131y 25 Bry 18y
=1
S 20 g 20
@ B
215 515
Z 5
1.0 10
= 15 30 45 60 7% 90 = 15 30 45 60 7% 90
G (degrees) oy (degrees)
Quadrupole Mode, 6/5,=02 Quadrupole Mode, 6/6,=10.5
(=] =]
% 3.0 g 30
25 —5r, /Sry o~ 25 —bry /5ry
=1
220 g8 20
17 @
215 515
2 :
1.0 10
= 15 30 45 60 7% 90 = 15 30 45 60 7% 90

oy (degrees) Gy (degrees)
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Comments:
+ For quadrupole transport using the axisymmetric equilibrium projections on
the breathing (+) mode and quadrupole (-) mode will NOT generally result in
nearly pure mode projections:

) )
ory = % = Breathing Mode Projection
ory — 6 ..
or_ = % # Quadrupole Mode Projection

- Mistake can be commonly found in research papers and can confuse analysis of
Supposidly pure classes of envelope oscillations which are not.

- Recall: reason denoted generalization of breathing mode with a subscript B
and quadrupole mode with a subscript Q was an attempt to avoid
confusion by overgeneralization

+ Must solve for eigenvectors of 4x4 envelope transfer matrix through one lattice
period calculated from the launch location in the lattice and analyze
symmetries to determine proper projections (see S6)

+ Normal mode coordinates can be found for the quadrupole and breathing
modes in AG quadrupole focusing lattices through analysis of the eigenvectors
but the expressions are typically complicated

- Modes have underlying Courant-Snyder invariant but it will be a complicated
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Summary: Envelope band instabilities and growth rates for periodic
solenoidal and quadrupole doublet focusing lattices

Envelope Mode Instability Growth Rates

Solenoid (1= 0.25) Quadrupole FODO ( _=0.70)
1.0 T 1.0 T
! ! ln|y B, Q‘ 1.0
Y8 Yo 0.0
6: 0.6 ,g 0.6 a. Band
e v N
© 04 + © o4
Lattice
02| Res. | 02
Band !
0.0 ; ! 0.0
100 120 140 160 180 100 120 140 160 180

O (deg/period) Gy (deg/period)
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S9: Transport Limit Scaling Based on Envelope Models

See Handwritten Notes from 2008 USPAS
+ Will convert to slides in future versions of the class
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S10: Centroid and Envelope Descriptions
via 1* Order Coupled Moment Equations

When constructing centroid and moment models, it can be efficient to simply
write moments, differentiate them, and then apply the equation of motion.
Generally, this results in lower order moments coupling to higher order ones and
an infinite chain of equations. But the hierarchy can be truncated by:

+ Assuming a fixed functional form of the distribution in terms of moments

+ Neglecting coupling to higher order terms

Resulting first order moment equations can be expressed in terms of a closed set
of moments and advanced in s or t using simple (ODE based) numerical codes.
This approach can prove simpler to include effects where invariants are not easily
extracted to reduce the form of the equations (as when solving the KV envelope
equations in the usual form).
Examples of effects that might be more readily analyzed:
+ Skew coupling in quadrupoles
+ Chromatic effects in final focus
* Dispersion in bends See: references at end of notes
J.J. Barnard, lecture on
Heavy-Ion Fusion and Final Focusing
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Resulting 1* order form of coupled moment equations:
d

—M = F(M)

M = vector of moments, and their s derivatives, generally infinite
F = vector function of M, generally nonlinear
+ System advanced from a specified initial condition (initial value of M)

Transverse moment definition:
(o)) = [d?x, [d* - fL
YT [, R f)

Can be generalized if other
variables such as off momentum
are included in f

Differentiate moments and apply equations of motion:

i<...> B A i R DA
ds' T [ dar [Pl fu

+ apply equations of motion to simplify PR
s
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When simplifying the results, if the distribution form is frozen in terms of
moments (Example: assume uniform density elliptical beam) then we use
constructs like:

n:/de’J_ f1 =n(M)
to simplify the resulting equations and express the RHS in terms of elements of M

1** order moments:

X1 =(xu)L Centroid coordinate

=&t

+ possible others if more variables. Example

Centroid angle

1)
A= <—;S> = (6) Centroid off-momentum
S
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2" order moments:
It is typically convenient to subtract centroid from higher-order moments

T=zx—X =z - X'
j=y-Y §=y-Y
S=06—A

X-moments y-moments X-y Cross moments

@)L (@ (E9).
(@)L (wy)r (@91, @y
@ @ (@)

dispersive moments
(20), (50)
(#'6), (¢'0)
(02)

3" order moments: Analogous to 2™ order case, but more for each order

<'%3>J-’ <i2ﬂ>J_,
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Many quantities of physical interest are expressed in transport can then be
expressed in terms of moments calculated when the equations are numerically
advanced in s and their evolutions plotted to understand behavior
+ Many quantities of physical interest are expressible in terms of
1 and 2™ order moments

Example moments often projected:

Statistical beam size:
(rms edge measure)

Statistical emittances:
(rms edge measure)

ee =4 [(#) 1 (#%), — (@3]
ry = 2059 ey =4[ LT — @i)2]"*

Kinetic longitudinal temperature:
(rms measure)

T, = const x (52)
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[lustrate approach with the familiar KV model

Truncation assumption: unbunched uniform density elliptical beam in free space
+ § =0, no axial velocity spread 7
+ All cross moments zero, i.e. (), =0

%<$>L = ()1 d%@?z)i =2zz)L v
i<w1>L _ <x”>L d< /2>L _ <x/x//>L

Use particle equations of motion within beam, neglect images, and simplify
+ Apply equations in S2 with E*, =

oy ) 2, )
B T T e v ) (—(z)L) =0
QB 20
VB Y YT (y—(y)r)=0
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Resulting system of 1st and 2nd order moments
1* order moments:

(z) 1
d | @) | _ | —ka(s) ()L
ds | {y)L (Y')L
(Y')L —ry(s)(y) L
2" order moments:
(2, [ 2(23'), 1
I _ - Q) )/?
(2%).1 (#2)1 — ra(s) (@)L + W
i <i’/2>1_ _ _2ﬂz(5)<:i:f/>1_ + @2)1/2[@22;?/2:_@2)1/2]
ds | @ | | 2@y)He .
S I -2 @)Y
<yy >J_ <y >J_ K’y(s)<y >J- + 2[g:}1;+?52>1/2]
~ ~~ vy
@ | [ 2RO

+ Express 1st and 2nd order moments separately in this case since uncoupled
+ Form truncates due to frozen distribution form: all moments on LHS on RHS
+ Integrate from initial moments values of s and project out desired quantities
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Using 2" order moment equations we can show that

d 2 _H_4d o
ds ™~ 0= ds Y

e2 =16 [(2%) 1 (z®)1 — (z2/)3 ] = const
= | ey =16[") 1)L — (y')1] = const

Using this, the 2™ order moment equations can be equivalently expressed in the
standard KV envelope form:

dry , d 20 &2
—— =y —r ry — —— — 2 =0
B TR gt
dry ' d , 2Q 512/
ds "y ds Ty T RyTy Ty + Ty 7’3

+ Moment form fully consistent with usual KV model .... as it must be
+ Moment form generally easier to put in additional effects that would violate
the usual emittance invariants
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Relative advantages of the use of coupled matrix form versus reduced equations
can depend on the problem/situation

Coupled Matrix Equations Reduced Equations

diM:F(M) X"+ 5, X =0
S
2
M = Moment Vector 7“;7/ + KpTy — & S _ 0

3
F = Force Vector Te + Ty Tz

etc.

+ Easy to formulate
- Straightforward to incorporate
additional effects
+ Natural fit to numerical routine
- Easy to numerically code/solve

Reduction based on identifying
invariants_such as
&2 =16 (%), (&%), - (@71 ]
helps understand solutions
+ Compact expressions can help
analytical understanding
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG 47R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

SMLund@]Ibl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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