3.5 Image forces (effect on centroid and envelope)

4. Transverse Particle Dynamics (SML)
4.1 Particle Equations of Motion
4.1.A Introduction: The Lorentz Force Equation
4.1.B Applied Fields
4.1.C Machine Lattice
4.1.D Self Fields
4.1.E Equations of Motion in a and the Paraxial Approximation
4.1.F Summary: Transverse Particle Equations of Motion
4.1.G Overview of Analysis to Come
4.1.H Bending Coordinate System and Particle Equations of Motion with Dipole Bends and Axial Momentum Spread
4.2 Transverse Particle Equations of Motion in Linear Focusing Channels
4.2.A Introduction
4.2.B Continuously Focusing
4.2.C Alternating Gradient Quadrupole Focusing - Electric Quadrupoles
4.2.D Alternating Gradient Quadrupole Focusing - Magnetic Quadrupoles
4.2.E Solenoidal Focusing
4.2.F Summary of Transverse Particle Equations of Motion
Appendix A: Quadrupole Skew Coupling
Appendix A: The Larmor Transform to Express Solenoidal Focused Particle Equations of Motion in Uncoupled Form
4.3 Description of Applied Focusing Fields
4.3.A Overview
4.3.B Magnetic Field Expansions for Focusing and Bending
4.3.C Hard Edge Equivalent Models
4.3.D 2D Transverse Multipole Magnetic Moments
4.3.E Good Field Radius
4.3.F Example Permanent Magnet Assemblies
4.4 Transverse Particle Equations of Motion with Nonlinear Applied Fields
4.4.A Overview
4.4.B Approach 1: Explicit 3D Form
4.4.C Approach 2: Perturbed Form
4.5 Linear Equations of Motion Without Space-Charge, Acceleration, and Momentum Spread
4.5.A JJB's equation
4.5.B Transfer Matrix Form of the Solution to Hill's Equation
4.5.C Wronskian Symmetry of Hill's Equation
4.5.D Stability of Solutions to Hill's Equation in a Periodic Lattice
4.6 Hill's Equation: Floquet's Theorem and the Phase-Amplitude Form of the Particle Orbit
4.6.A Introduction
4.6.B Floquet's Theorem
4.6.C Phase-Amplitude Form of the Particle Orbit
4.6.D Summary: Phase-Amplitude Form of the Solution to Hill's Equation
4.6.E Points on the Phase-Amplitude Formulation
4.6.F Relation Between the Principal Orbit Functions and the Phase-Amplitude Form Orbit Functions
4.6.G Undepressed Particle Phase Advance
Appendix C: Calculation of w(s) from Principal Orbit Functions
4.7 Hill's Equation: The Courant-Snyder Invariant and the Single-Particle Emittance
4.7.A Introduction
4.7.B Derivation of the Courant-Snyder Invariant
4.7.C Lattice Maps
4.8 Hill's Equation: The Betatron Formulation of the Particle Orbit and Maximum Orbit Excursions
4.8.A Formulation
4.8.B Betatron Orbit Excursions
4.9 Momentum Spread Effects and Bending
4.9.A Overview
4.9.B Chromatic Effects
4.9.B Dispersive Effects
4.10 Acceleration and Normalized Emittance
4.10.A Introduction
4.10.B Transformation to Normal Form
4.10.C Phase-Space Relations Between Transformed and Untransformed Systems
Appendix D: Accelerating Fields and Calculation of Changes in gamma*beta
5. Transverse Equilibrium Distribution Functions (SML)

5.1 Vlasov Model

5.2 Vlasov Equilibria

5.3 The KV Equilibrium Distribution

6. Transverse Particle Resonances with Application to Circular Accelerators

6.1 Overview
- Methods of Gridded Field Solution
 - Spectral Methods and the FFT
 15.4.D Weighting: Depositing Particles on the Field Mesh and Interpolating Fields to the Particles
 - Overview of Approaches
 - Approaches: Nearest Grid Point, Cloud in Cell, Area, Splines
 15.4.E Computational Cycle for Particle in Cell Simulations
 15.5 Diagnostics
 15.6 Initial Distribution and Particle Loading
 15.7 Numerical Convergence
 15.8 Practical Considerations
 15.8.A Overview
 15.8.B Fast Memory
 15.8.C Run Time
 15.8.D Machine Architectures
 15.9 Overview of the WARP Code
 15.10 Example Simulations
Contact Information
Acknowledgments
References

16. Summary of Lectures by John J. Barnard (JJB)
 16.1 Emittance and phase space review
 16.2 Particle equations of motion (radial and Cartesian)
 16.3 Summary of 6 statistical envelope equations and two equations based on particular distribution functions
 16.4 Current limits
 16.5 Using envelope equations to estimate spot size
 16.6 Longitudinal dynamics summary
 16.7 Instability summary
 16.8 Halo summary
 16.9 Electron, gas, pressure, and scattering effects summary
 16.10 Summary of HIF