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Abstract

Reduc t ion  of  core - resonan t  magne t ic

fluctuations and improved confinement in

the MST are reliably achieved through

control of the poloidal electric field. However,

the achieved confinement has been limited

by a burst-like instability originating in the

plasma edge. Now, improved control of the

poloidal and toroidal electric fields allows

multi-ms suppression of this instability, along

with core fluctuation reduction, leading to

(1) Te(0) ≈  840 eV at 470 kA, (2) β total > 12%

at 200 kA, (3) an overall steepening of Te( r ),

(4) a reduct ion  of Te and ne in the region ρ ≥
0 . 9, and (5) a reduced electron thermal

d i f f u s i v i t y . Equally important is that the

estimated energy confinement time at 200 kA

significantly exceeds the "constant beta"

scaling that has characterized the world RFP

confinement database.



Outline

-- Improved energy confinement
discharges in the MST

-- Edge burst-like instability
occurring only during improved
conf inement

-- Suppression of these bursts

-- Profile measurements during
burst suppression: increased
gradients and (further) improved
global confinement parameters



Improved confinement discharges
and edge instability

-- Improved energy confinement
can be d r iven by inductive increase
of edge poloidal electric field
(primary focus of this poster)

-- Can also occur spontaneously

-- In both cases, a burst-like
instability occurs in the edge,
clamping or reducing the otherwise
improved energy confinement

-- With burst suppression,
confinement parameters improve
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Driven improved confinement triggered
by pulsed poloidal current drive (PPCD)

-- PPCD increases the edge poloidal electric
field and current in a series of pulses (four 
shown here, but five are now in use)

-- Hypotheses for why this occurs include 
(1) magnetic fluctuation reduction due to 
the change in the current profile and (2) 
electrostatic and magnetic fluctuation 
reduction due to strong E × B  flow shear

-- Causes reduction of magnetic and
electrostatic fluctuations everywhere 
(between bursts)



Edge burst-like instability

-- Occurs with the same
phenomenology during driven and
spontaneous improved confinement

-- Causes short-lived increase of
primarily edge fluctuations and
degradation of global confinement

-- Affects edge-resonant m = 0
magnetic fluctuations (modes)

-- Affects electrostatic fluctuations
over broad frequency range

-- Cause of bursts unknown, but
probably linked to observed edge
pressure and/or current gradients



Each burst affects most MST plasma
parameters, momentarily degrading

periods of improved energy confinement
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Burst Estimated ohmic
input power

Neutral deuterium
(CX) flux

-- Each burst corresponds to generation of
toroidal magnetic flux, like sawtooth
crashes during standard confinement

-- Increase of ohmic power, radiation,
neutral flux, etc. contributes to degraded 
energy confinement.

PPCD
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Edge-originating bursts affect the
core electron temperature, Te( 0 )

-- Inferred from measurements of
T e(0) during improved confinement
with varying burst repetition rates

-- At ∼ 450 kA, <ne> ∼  1 0
1 3

 c m
- 3

:

Confinement  Burst T e(0)
tr igger     spacing  (eV)

spontaneous ∼  1 ms  4 8 0
PPCD ∼  3 ms  615
PPCD     ≤ 10 ms  840*

*record for the MST

-- Each burst either decreases Te( 0 )
or briefly halts its growth
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The dominant magnetic fluctuations
in the MST are m = 0 and m = 1 modes

-- Shown below is a q profile typical of 
improved confinement discharges:

-- Fluctuations with n ≤ 5 correspond only
to m = 0 modes

-- Fluctuations with n > 5 include both
m = 0 and m = 1 modes

-- All these fluctuations can be measured
with sensing coils at the plasma boundary
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Each burst corresponds to an increase in
primarily m = 0 magnetic fluctuations

Toroidal mode
spectrum during

PPCD with a burst
at ∼  12.55 ms

12.2 12.4 12.6 12.8
Time (ms)

0

5

1 0

1 5

2 0

b
t(

n
=

6
)/

b p
(n

=
6

)
∼

∼

ik  × B  = 0 in sensing 
coil location implies 
b t / b p  = (n/m)(a/R)

= 2 for m = 1, n = 6
>> 2 for m = 0, n = 6

b u r s t
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Bursts increase density fluctuations
primarily in the edge



Bursts increase edge potential fluctuations over a
broad range of frequencies (standard and

spontaneous-improved confinement data shown)
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Interim conclusions

-- Bursts correspond to a
degradation of energy confinement

-- Increase in edge magnetic and
electrostatic fluctuations likely to
contribute to this transport, but
relevant transport measurements
have yet to be made

-- Edge origin indicated by the
bursts' appearance in the m = 0
magnetic fluctuations and their
effect on the density profile and
density fluctuations
*************************************
-- Next we discuss the suppression
of these bursts and confinement
parameter improvements
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Suppression of bursts

-- Formerly, bursts could only be
suppressed for ≤ 3 ms

-- Suppression for ≤ 10 ms d u e
primarily to better/longer
sustainment of edge parallel
electric field, Eparallel = E•B/B

-- Ep o l simply not allowed to decay
to zero between PPCD stages

-- Etor reversed (see next page)
following PPCD

-- Requires good wall conditions,
and a <n e> limit applies: bursts are
irrepressible above a certain <ne>



Reversing Et o r following PPCD sustains
toroidal component of Eparallel  in the edge

q = 0

Btor Btor

-- Normally, by definition, Et o r is parallel (to 
B) on axis and antiparallel in the edge

-- Ep ol increase (PPCD) and Etor reversal are 
transient, but their combination has led to 
significantly improved confinement 
parameters, discussed next...

-- Reversed Etor (opposite the direction of
Btor in the edge) adds to Eparallel

Bpol

Epol(PPCD)normal Et o r

reversed Etor

Edge parallel direction
is up and into the paper
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Te and χe notes and caveats

-- Measured similar Te profile
shapes in ho t te r 400 kA discharges

-- Inner (5) Te datapoints from
single-time-point, single-spatial-
point TS system, averaging many
discharges for each point

-- Horizontal error bars reflect TS
spatial resolution and are probably
lower bounds

-- Edge points from Langmuir probe

-- χe based on assumed Zeff(r) = 2.0;
we believe that χe drops, b u t
absolute magnitude and structure
of χe(r) cannot be trusted
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Langmuir probe reveals that the edge Te
(and ne, not shown) decrease during PPCD

Standard

PPCD

Te(0)PPCD = 546 eV

Te(0)standard = 200 eV 

-- Edge density profiles have similar shape

-- Profile shape not really known for ρ <
0.9 (curves are spline fits to TS datapoints)

-- Green hashes indicate region where
strong E × B flow shear has been 
measured in PPCD (weak in standard 
case); no flow shear data exists for ρ  < 0.82

-- Reduction of Te and ne  may indicate
that transport is locally reduced in the 
hashed region (and perhaps beyond)



Comparison of standard and PPCD
improved confinement parameters

Ip(kA)  <ne>×1 01 3 c m-3  Te( 0 )  W(kJ)  βt o t(%)

2 1 0   0.8     200   1.9   6.3
2 1 0   0.7  546  4.7   12.6

  
 430   1.0  400  4.4   3.3
 390   1.0  770  8.9   8.0

 470   1.2  840    ?     ?

-- 430 kA/390 kA Te and ne profiles
similar in shape to 210 kA/210 kA
profiles; no Te profile data for 4 7 0
kA case

-- Assumed T i(r) = (1/4)Te( r ) a n d
T i(r) = (1/2)Te( r )



a2I1.5(I/N)1.5

[m2MA1.5(1020MA-m)1.5]

0.01

0.1

τE (ms)

1

10

0.001 0.01 0.1 1

ZT-P

ηβ−ΙΙ

TPE-1RM

OHTE TPE-1RM15

HBTX-1B
TPE-1RM20

ZT-40M

MST RFX

RFX
PPCD

’97

MST 210 kA
PPCD ‘99

MST
PPCD

’96

MST 390 kA
PPCD ‘99

World RFP Confinement Database

“Constant β ” Scaling

Assuming Zeff(r) = 2, estimated energy
confinement time of 200 kA PPCD

exceeds “constant β ” scaling

-- Were Zeff(r) = 11, 210 kA PPCD ‘99 
would fall on the scaling line --> unlikely

-- PPCD ‘96 case had Te(0) = 615 eV at 440 
kA, while 390 kA PPCD ‘99 has Te(0) = 770 
eV: uncertainty lies in Pohmic and Ti(r)



Summary/discuss ion

-- A burst-like instability occurs in
the edge of improved energy
confinement discharges

-- Energy confinement is degraded
by each burst

-- Magnetic and electrostatic
fluctuations increase in the edge,
but their relative contributions to
transport have not been
de te rmined

-- Burst suppression now possible,
leading to improvements in
confinement parameters



-- Temperature and temperature
gradients increase; electron thermal
diffusivity decreases

-- Edge temperature and density
decrease (outside region of strong E
× B flow shear)

-- Core energy transport is believed
to drop during improved
conf inement

-- Perhaps edge energy transport
drops as well?

-- Measurements outstanding: (1)
Zeff (and Pohmic), (2) Er profile
with new HIBP, and (3) better
resolved temperature and density
profiles with new TS system


